

Python Parallel Programming
Cookbook
Second Edition

Over 70 recipes to solve challenges in multithreading and
distributed system with Python 3

Giancarlo Zaccone

BIRMINGHAM - MUMBAI

Python Parallel Programming Cookbook
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Chaitanya Nair
Content Development Editor: Ruvika Rao
Senior Editor: Afshaan Khan
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Joshua Misquitta

First published: August 2015
Second edition: September 2019

Production reference: 1050919

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-373-6

www.packt.com

https://www.packtpub.com

To my family.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Giancarlo Zaccone has over fifteen years' experience of managing research projects in the
scientific and industrial domains. He is a software and systems engineer at the European
Space Agency (ESTEC), where he mainly deals with the cybersecurity of satellite navigation
systems.

Giancarlo holds a master's degree in physics and an advanced master's degree in scientific
computing.

Giancarlo has already authored the following titles, available from Packt: Python Parallel
Programming Cookbook (First Edition), Getting Started with TensorFlow, Deep Learning with
TensorFlow (First Edition), and Deep Learning with TensorFlow (Second Edition).

About the reviewer
Dr. Michael Galloy is a software developer focusing on high-performance computing and
visualization in scientific programming. He works mostly in IDL, but occasionally uses
Python, C, and CUDA. Michael currently works for the National Center for Atmospheric
Research (NCAR) at the Mauna Loa Solar Observatory. Previously, he worked for Tech-X
Corporation, where he was the main developer of GPULib, a library of IDL bindings for
GPU-accelerated computation routines. He is the creator and main developer for IDLdoc,
mgunit, and rIDL, all of which are open source projects, as well as the author of Modern
IDL.

Richard Marsden has 25 years of professional software development experience. After
starting in the field of geophysical surveying for the oil industry, he has spent the last 15
years running the Winwaed Software Technology LLC, an independent software vendor.
Winwaed specializes in geospatial tools and applications including web applications and
operates the Mapping-Tools website for tools and add-ins for geospatial applications such
as Caliper Maptitude, Microsoft MapPoint, Android, and Ultra Mileage.

Richard has been a technical reviewer for a number of Packt publications, including Python
Geospatial Development and Python Geospatial Analysis Essentials, both by Erik Westra; and
Python Geospatial Analysis Cookbook, by Michael Diener.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Parallel Computing and Python 8
Why do we need parallel computing? 9
Flynn's taxonomy 10

Single Instruction Single Data (SISD) 10
Multiple Instruction Single Data (MISD) 13
Single Instruction Multiple Data (SIMD) 13
Multiple Instruction Multiple Data (MIMD) 14

Memory organization 15
Shared memory 16
Distributed memory 18
Massively Parallel Processing (MPP) 19
Clusters of workstations 20
Heterogeneous architectures 20

Parallel programming models 22
Shared memory model 22
Multithread model 23
Message passing model 23
Data-parallel model 24

Designing a parallel program 25
Task decomposition 26
Task assignment 26
Agglomeration 26
Mapping 27
Dynamic mapping 27

Evaluating the performance of a parallel program 28
Speedup 29
Efficiency 29
Scaling 30
Amdahl's law 30
Gustafson's law 31

Introducing Python 31
Help functions 32
Syntax 33
Comments 35
Assignments 35
Data types 35
Strings 37
Flow control 37
Functions 39

Table of Contents

[ii]

Classes 40
Exceptions 41
Importing libraries 42
Managing files 42
List comprehensions 43
Running Python scripts 43
Installing Python packages using pip 44

Installing pip 44
Updating pip 44
Using pip 44

Introducing Python parallel programming 45
Processes and threads 45

Chapter 2: Thread-Based Parallelism 50
What is a thread? 51
Python threading module 52
Defining a thread 53

Getting ready 53
How to do it... 54
How it works... 55
There's more... 55

Determining the current thread 55
Getting ready 55
How to do it... 56
How it works... 57

Defining a thread subclass 57
Getting ready 57
How to do it... 58
How it works... 59
There's more... 60

Thread synchronization with a lock 61
Getting ready 61
How to do it... 62
How it works... 63
There's more... 64

Thread synchronization with RLock 65
Getting ready 66
How to do it... 66
How it works... 68
There's more... 68

Thread synchronization with semaphores 69
Getting ready 69
How to do it... 69
How it works... 71
There's more... 72

Table of Contents

[iii]

Thread synchronization with a condition 73
Getting ready 73
How to do it... 73
How it works... 75
There's more... 77

Thread synchronization with an event 77
Getting ready 77
How to do it... 78
How it works... 80

Thread synchronization with a barrier 81
Getting ready 81
How to do it... 81
How it works... 82

Thread communication using a queue 83
Getting ready 83
How to do it... 83
How it works... 84
There's more... 86

Chapter 3: Process-Based Parallelism 87
Understanding Python's multiprocessing module 88
Spawning a process 88

Getting ready 88
How to do it... 89
How it works... 89
There's more... 90
See also 91

Naming a process 91
Getting ready 92
How to do it... 92
How it works... 93
There's more... 93
See also 93

Running processes in the background 93
Getting ready 94
How to do it... 94
How it works... 95
See also 96

Killing a process 96
Getting ready 97
How to do it... 97
How it works... 98
See also 98

Defining processes in a subclass 99
Getting ready 99

Table of Contents

[iv]

How to do it... 99
How it works... 100
There's more... 101
See also 101

Using a queue to exchange data 101
Getting ready 101
How to do it... 102
How it works... 103
There's more... 104
See also 105

Using pipes to exchange objects 105
Getting ready 105
How to do it... 105
How it works... 107
There's more... 108
 See also 108

Synchronizing processes 108
Getting ready 109
How to do it... 109
How it works... 110
There's more... 111
See also 112

Using a process pool 112
Getting ready 112
How to do it… 113
How it works… 114
There's more... 114
See also 115

Chapter 4: Message Passing 116
Technical requirements 116
Understanding the MPI structure 117
Using the mpi4py Python module 119

How to do it... 120
How it works... 120
There's more... 121
See also 122

Implementing point-to-point communication 122
How to do it... 122
How it works... 124
There's more... 126
See also 126

Avoiding deadlock problems 126
How to do it... 127
How it works... 127

Table of Contents

[v]

There's more... 130
See also 130

Collective communication using a broadcast 131
Getting ready 131
How to do it... 132
How it works... 132
There's more... 133
See also 134

Collective communication using the scatter function 134
How to do it... 135
How it works... 135
There's more... 137
See also 137

Collective communication using the gather function 137
Getting ready 137
How to do it... 138
How it works... 139
There's more... 140
See also 140

Collective communication using Alltoall 140
How to do it... 140
How it works... 141
There's more... 142
See also 142

The reduction operation 143
Getting ready 143
How to do it... 143
How it works... 144
There's more... 145
See also 146

Optimizing communication 146
How to do it... 147
How it works... 148
There's more... 150
See also 152

Chapter 5: Asynchronous Programming 153
Using the concurrent.futures Python module 154

Getting ready 155
How to do it... 155
How it works... 157
There's more... 159
See also 160

Managing the event loop with asyncio 160
Understanding event loops 160

Table of Contents

[vi]

How to do it... 162
How it works... 164
There's more... 165
See also 166

Handling coroutines with asyncio 166
Getting ready 167
How to do it... 167
How it works... 171
There's more... 172
See also 172

Manipulating tasks with asyncio 173
How to do it... 174
How it works... 175
There's more... 176
See also 177

Dealing with asyncio and futures 177
Getting ready 177
How to do it... 177
How it works... 179
There's more... 181
See also 181

Chapter 6: Distributed Python 182
Introducing distributed computing 182
Types of distributed applications 183

Client-server applications 183
Client-server architecture 184
Client-server communications 185
TCP/IP client-server architecture 185

Multi-level applications 186
Using the Python socket module 187

Getting ready 187
How to do it... 188
How it works... 190
There's more... 191

Types of sockets 193
Stream sockets 193

See also 194
Distributed task management with Celery 194

Getting ready 196
Windows setup 197

How to do it... 197
How it works... 198
There's more... 200
See also 202

RMI with Pyro4 202

Table of Contents

[vii]

Getting ready 203
How to do it... 204
How it works... 205
There's more... 207

Implementing chain topology 208
See also 210

Chapter 7: Cloud Computing 211
What is cloud computing? 212
Understanding the cloud computing architecture 214

Service models 215
SaaS 215
PaaS 216
IaaS 216

Distribution models 216
Public cloud 217
Private cloud 217
Cloud community 217
Hybrid cloud 217

Cloud computing platforms 218
Developing web applications with PythonAnywhere 218

Getting ready 219
How to do it... 222
How it works... 226
There's more... 228
See also 229

Dockerizing a Python application 230
Getting ready 230

Installing Docker for Windows 231
How to do it... 232
How it works... 233
There's more... 234
See also 236

Introducing serverless computing 236
Getting ready 237
How to do it... 238
How it works... 246
There's more... 246

What is a Lambda function? 247
Why serverless? 247
Possible problems and limitations 248

See also 249

Chapter 8: Heterogeneous Computing 250
Understanding heterogeneous computing 251
Understanding the GPU architecture 251
Understanding GPU programming 252

Table of Contents

[viii]

CUDA 253
OpenCL 253

Dealing with PyCUDA 254
Getting ready 254
How to do it... 254
How it works... 255
There's more... 256
See also 257

Heterogeneous programming with PyCUDA 257
How to do it... 259
How it works... 260
There's more... 262
See also 263

Implementing memory management with PyCUDA 263
Getting ready 264
How to do it... 265
How it works... 268
There's more... 271
See also 272

Introducing PyOpenCL 272
Getting ready 272
How to do it... 273
How it works... 274
There's more... 275
See also 276

Building applications with PyOpenCL 276
How to do it... 278
How it works... 279
There's more... 282
See also 282

Element-wise expressions with PyOpenCL 283
Getting started 283
How to do it... 283
How it works... 284
There's more... 286
See also 287

Evaluating PyOpenCL applications 287
Getting started 287
How to do it... 287
How it works... 290
There's more... 292

Pros of OpenCL and PyOpenCL 292
Cons of OpenCL and PyOpenCL 292
Pros of CUDA and PyCUDA 293
Cons of CUDA and PyCUDA 293

Table of Contents

[ix]

See also 293
GPU programming with Numba 293

Getting ready 294
How to do it... 295
How it works... 297
There's more... 299
See also 301

Chapter 9: Python Debugging and Testing 302
What is debugging? 303
What is software testing? 305
Debugging using Winpdb Reborn 305

Getting ready 306
How to do it... 306
How it works... 312
There's more... 313
See also 314

Interacting with pdb 314
Getting ready 315

Interacting with the command line 315
Using the Python interpreter 316
Inserting a directive in the code to debug 316

How to do it... 317
How it works... 318
There's more... 318
See also 319

Implementing rpdb for debugging 319
Getting ready 319
How to do it... 321
How it works... 323
There's more... 324
See also 325

Dealing with unittest 326
Getting ready 326
How to do it... 327
How it works... 327
There's more... 329
See also 331

Application testing using nose 331
Getting ready 331
How to do it... 332
How it works... 333
There's more... 333
See also 334

Other Books You May Enjoy 335

Table of Contents

[x]

Index 338

Preface
The computing industry is characterized by the search for ever-increasing and efficient
performance, from high-end applications in the sectors of networking, telecommunications,
avionics, to low-power embedded systems in desktop computers, laptops, and video
games. This development path has led to multicore systems, where two-, four-, and eight-
core processors represent only the beginning of an upcoming expansion to an ever-
increasing number of computing cores.

This expansion, however, creates a challenge, not only in the semiconductor industry but
also in the development of applications that can be performed with parallel calculations.

Parallel computing, in fact, represents the simultaneous use of multiple computing
resources to solve a processing problem, so that it can be executed on multiple CPUs,
breaking a problem into discrete parts that can be processed simultaneously, where each is
further divided into a series of instructions that can be executed serially on different CPUs.

Computing resources can include a single computer with multiple processors, an arbitrary
number of computers connected via a network, or a combination of both
approaches. Parallel computing has always been considered the extreme apex or future of
computing, and up until a few years ago, it was motivated by numerical simulations of
complex systems and situations concerning various sectors: weather and climate forecasts,
chemical and nuclear reactions, human genome mapping, seismic and geological activity,
the behavior of mechanical devices (from prostheses to space shuttles), electronic circuits,
and manufacturing processes.

Today, however, ever more commercial applications are increasingly demanding the
development of ever-faster computers to support the processing of large amounts of data in
sophisticated ways. Applications for this include data mining and parallel databases, oil
exploration, web search engines, and services networked business, computer-aided medical
diagnoses, the management of multinational companies, advanced graphics and virtual
reality (especially in the video game industry), multimedia and video network
technologies, and collaborative work environments.

Last but not least, parallel computing represents an attempt to maximize that infinite, but at
the same time, increasingly precious and scarce resource of time. This is why parallel
computing is shifting from the world of very expensive supercomputers, reserved for a
select few, to more economic and solutions based on multiple processors, Graphics
Processing Units (GPUs), or a few interconnected computers that can overcome the
constraints of serial computing and the limits of single CPUs.

Preface

[2]

To introduce the concepts of parallel programming, one of the most popular programming
languages has been adopted—Python. Python's popularity is partly due to its flexibility
since it is a language used regularly by web and desktop developers, sysadmin and code
developers, and more recently, by data scientists and machine learning engineers.

From a technological point of view, in Python, there is no separate compilation phase (as
happens in C, for example) that generates an executable file starting from the source. The
fact that it is pseudo-interpreted makes Python a portable language. Once a source is
written, it can be interpreted and executed on most of the platforms currently used,
whether they are from Apple (macOS X) or PC (Microsoft Windows and GNU/Linux).

Another strength of Python is its ease of learning. Anyone can learn to use it over a couple of
days and write their first application. In this context, the open structure of the language
plays a fundamental role, without redundant declarations and thus extremely similar to a
spoken language. Finally, Python is free software: not only are the Python interpreter and
the use of Python in our applications available for free, but Python can also be freely
modified and thus redistributed according to the rules of a fully open source license.

Python Parallel Programming Cookbook, Second Edition, contains a wide variety of examples
that offer to the reader the opportunity to solve real problems. It examines the principles of
software design for parallel architectures, insisting on the importance of clarity of the
programs, and avoids the use of complex terminology in favor of clear and direct examples.

Each topic is presented as part of a complete, working Python program, always followed by
the output of the program in question. The modular organization of the various chapters
provides a proven path along which to move from the simplest arguments to the most
advanced, but it is also suitable for those who want to learn only a few specific issues.

Who this book is for
Python Parallel Programming Cookbook, Second Edition, is intended for software developers
who want to use parallel programming techniques to write powerful and efficient code.
Reading this book will enable you to master both the basics and the advanced aspects of
parallel computing.

The Python programming language is easy to use and allows non-experts to tackle and
understand the topics outlined in this book with ease.

Preface

[3]

What this book covers
Chapter 1, Getting Started with Parallel Computing and Python, provides an overview of
parallel programming architectures and programming models. The chapter introduces the
Python programming language, discussing how the characteristics of the language, its ease
of learning and use, its extensibility, and the richness of the available software libraries and
applications all make Python a valuable tool for any application, and especially, of course,
for parallel computing.

Chapter 2, Thread-Based Parallelism, discusses thread parallelism using the
threading Python module. Readers will learn, through full programming examples, how
to synchronize and manipulate threads to implement in their multithreading applications.

Chapter 3, Process-Based Parallelism, guides the reader through the process-based approach
to parallelizing a program. A complete set of examples will show readers how to use
the multiprocessing Python module.

Chapter 4, Message Passing, is focused on message-passing exchange communication
systems. In particular, the mpi4py library will be described with a lot of application
examples.

Chapter 5, Asynchronous Programming, explains the asynchronous model for concurrent
programming. In some ways, it is simpler than the threaded one because there is a single
instruction stream, and tasks explicitly relinquish control instead of being suspended
arbitrarily. The chapter shows readers how to use the asyncyio module to organize each
task as a sequence of smaller steps that must be executed in an asynchronous manner.

Chapter 6, Distributed Python, introduces the reader to distributed computing, which is the
process of aggregating several computing units to collaboratively run a single
computational task in a transparent and coherent way. In particular, the example
applications provided in the chapter describe the use of the socket and Celery modules to
manage distributed tasks.

Chapter 7, Cloud Computing, provides an overview of the main cloud-computing
technologies in relation to the Python programming language.
The PythonAnywhere platform is very useful for deploying Python applications on the
cloud, and will be examined in this chapter. This chapter also contains example
applications demonstrating the use of containers and serverless technologies.

Preface

[4]

Chapter 8, Heterogeneous Computing, looks at the modern GPUs that are providing
breakthrough performance for numerical computing at the cost of increased programming
complexity. In fact, the programming models for GPUs require that the coder manually
manage the data transfer between the CPU and GPU. This chapter will teach the reader,
using programming examples and use cases, how to exploit the computing power provided
by GPU cards using the powerful Python modules of PyCUDA, Numba, and PyOpenCL.

Chapter 9, Python Debugging and Testing, is the last chapter that introduces two important
topics on software engineering: debugging and testing. In particular, the following Python
frameworks will be described: winpdb-reborn for debugging, and unittest and nose for
software testing.

To get the most out of this book
This book is self-contained: the only fundamental requirement before starting to read is a
passion for programming and a curiosity for the topics covered in the book.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
https://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Python- Parallel- Programming- Cookbook- Second- Edition. We also
have other code bundles from our rich catalog of books and videos available at https:/ /
github.com/PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789533736_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "It's possible to kill a process immediately by using the terminate method."

A block of code is set as follows:

import socket
port=60000
s =socket.socket()
host=socket.gethostname()

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 p = multiprocessing.Process(target=foo)
 print ('Process before execution:', p, p.is_alive())
 p.start()

Any command-line input or output is written as follows:

> python server.py

https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Python-Parallel-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789533736_ColorImages.pdf

Preface

[6]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Go to System Properties | Environment Variables | User or System variables | New."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

Preface

[7]

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Getting Started with Parallel

Computing and Python
The parallel and distributed computing models are based on the simultaneous use of different
processing units for program execution. Although the distinction between parallel and
distributed computing is very thin, one of the possible definitions associates the parallel
calculation model with the shared memory calculation model, and the distributed
calculation model with the message passing model.

From this point onward, we will use the term parallel computing to refer to both parallel and
distributed calculation models.

The next sections provide an overview of parallel programming architectures and
programming models. These concepts are useful for inexperienced programmers who are
approaching parallel programming techniques for the first time. Moreover, it can be a basic
reference for experienced programmers. The dual characterization of parallel systems is
also presented. The first characterization is based on the system architecture, while the
second characterization is based on parallel programming paradigms.

The chapter ends with a brief introduction to the Python programming language. The
characteristics of the language, ease of use and learning, and the extensibility and richness
of software libraries and applications make Python a valuable tool for any application, and
also for parallel computing. The concepts of threads and processes are introduced in
relation to their use in the language.

Getting Started with Parallel Computing and Python Chapter 1

[9]

In this chapter, we will cover the following recipes:

Why do we need parallel computing?
Flynn's taxonomy
Memory organization
Parallel programming models
Evaluating performance
Introducing Python
Python and parallel programming
Introducing processes and threads

Why do we need parallel computing?
The growth in computing power made available by modern computers has resulted in us
facing computational problems of increasing complexity in relatively short time frames.
Until the early 2000s, complexity was dealt with by increasing the number of transistors as
well as the clock frequency of single-processor systems, which reached peaks of 3.5-4 GHz.
However, the increase in the number of transistors causes the exponential increase of the
power dissipated by the processors themselves. In essence, there is, therefore, a physical
limitation that prevents further improvement in the performance of single-processor
systems.

For this reason, in recent years, microprocessor manufacturers have focused their attention
on multi-core systems. These are based on a core of several physical processors that share
the same memory, thus bypassing the problem of dissipated power described earlier. In
recent years, quad-core and octa-core systems have also become standard on normal desktop
and laptop configurations.

On the other hand, such a significant change in hardware has also resulted in an evolution
of software structure, which has always been designed to be executed sequentially on a
single processor. To take advantage of the greater computational resources made available
by increasing the number of processors, the existing software must be redesigned in a form
appropriate to the parallel structure of the CPU, so as to obtain greater efficiency through
the simultaneous execution of the single units of several parts of the same program.

Getting Started with Parallel Computing and Python Chapter 1

[10]

Flynn's taxonomy
Flynn's taxonomy is a system for classifying computer architectures. It is based on two
main concepts:

Instruction flow: A system with n CPU has n program counters and,
therefore, n instructions flows. This corresponds to a program counter.
Data flow: A program that calculates a function on a list of data has a data flow.
The program that calculates the same function on several different lists of data
has more data flows. This is made up of a set of operands.

As the instruction and data flows are independent, there are four categories of parallel
machines: Single Instruction Single Data (SISD), Single Instruction Multiple Data
(SIMD), Multiple Instruction Single Data (MISD), and Multiple Instruction Multiple
Data (MIMD):

Flynn's taxonomy

Single Instruction Single Data (SISD)
The SISD computing system is like the von Neumann machine, which is a uniprocessor
machine. As you can see in Flynn's taxonomy diagram, it executes a single instruction that
operates on a single data stream. In SISD, machine instructions are processed sequentially.

Getting Started with Parallel Computing and Python Chapter 1

[11]

In a clock cycle, the CPU executes the following operations:

Fetch: The CPU fetches the data and instructions from a memory area, which is
called a register.
Decode: The CPU decodes the instructions.
Execute: The instruction is carried out on the data. The result of the operation is
stored in another register.

Once the execution stage is complete, the CPU sets itself to begin another CPU cycle:

The fetch, decode, and execute cycle

The algorithms that run on this type of computer are sequential (or serial) since they do not
contain any parallelism. An example of a SISD computer is a hardware system with a single
CPU.

The main elements of these architectures (namely, von Neumann architectures) are as
follows:

Central memory unit: This is used to store both instructions and program data.
CPU: This is used to get the instruction and/or data from the memory unit, which
decodes the instructions and sequentially implements them.
The I/O system: This refers to the input and output data of the program.

Getting Started with Parallel Computing and Python Chapter 1

[12]

Conventional single-processor computers are classified as SISD systems:

The SISD architecture schema

The following diagram specifically shows which areas of a CPU are used in the stages of
fetch, decode, and execute:

CPU components in the fetch-decode-execute phase

Getting Started with Parallel Computing and Python Chapter 1

[13]

Multiple Instruction Single Data (MISD)
In this model, n processors, each with their own control unit, share a single memory unit. In
each clock cycle, the data received from the memory is processed by all processors
simultaneously, each in accordance with the instructions received from its control unit.

In this case, the parallelism (instruction-level parallelism) is obtained by performing several
operations on the same piece of data. The types of problems that can be solved efficiently in
these architectures are rather special, such as data encryption. For this reason, the MISD
computer has not found space in the commercial sector. MISD computers are more of an
intellectual exercise than a practical configuration.

Single Instruction Multiple Data (SIMD)
A SIMD computer consists of n identical processors, each with their own local memory,
where it is possible to store data. All processors work under the control of a single
instruction stream. In addition to this, there are n data streams, one for each processor. The
processors work simultaneously on each step and execute the same instructions, but on
different data elements. This is an example of data-level parallelism.

The SIMD architectures are much more versatile than MISD architectures. Numerous
problems covering a wide range of applications can be solved by parallel algorithms on
SIMD computers. Another interesting feature is that the algorithms for these computers are
relatively easy to design, analyze, and implement. The limitation is that only the problems
that can be divided into a number of subproblems (which are all identical, each of which
will then be solved simultaneously through the same set of instructions) can be addressed
with the SIMD computer.

With the supercomputer developed according to this paradigm, we must mention the
Connection Machine (Thinking Machine, 1985) and MPP (NASA, 1983).

As we will see in Chapter 6, Distributed Python, and Chapter 7, Cloud Computing, the
advent of modern graphics cards (GPUs), built with many SIMD-embedded units, has led
to the more widespread use of this computational paradigm.

Getting Started with Parallel Computing and Python Chapter 1

[14]

Multiple Instruction Multiple Data (MIMD)
This class of parallel computers is the most general and most powerful class, according to
Flynn's classification. This contains n processors, n instruction streams, and n data streams.
Each processor has its own control unit and local memory, which makes MIMD
architectures more computationally powerful than SIMD architectures.

Each processor operates under the control of a flow of instructions issued by its own
control unit. Therefore, the processors can potentially run different programs with different
data, which allows them to solve subproblems that are different and can be a part of a
single larger problem. In MIMD, the architecture is achieved with the help of the
parallelism level with threads and/or processes. This also means that the processors usually
operate asynchronously.

Nowadays, this architecture is applied to many PCs, supercomputers, and computer
networks. However, there is a counter that you need to consider: asynchronous algorithms
are difficult to design, analyze, and implement:

The SIMD architecture (A) and the MIMD architecture (B)

Flynn's taxonomy can be extended by considering that SIMD machines can be divided into
two subgroups:

Numerical supercomputers
Vectorial machines

Getting Started with Parallel Computing and Python Chapter 1

[15]

On the other hand, MIMD can be divided into machines that have a shared memory and
those that have a distributed memory.

Indeed the next section focuses on this last aspect of the organization of the memory of
MIMD machines.

Memory organization
Another aspect that we need to consider in order to evaluate parallel architectures is
memory organization, or rather, the way in which data is accessed. No matter how fast the
processing unit is, if memory cannot maintain and provide instructions and data at a
sufficient speed, then there will be no improvement in performance.

The main problem that we need to overcome to make the response time of memory
compatible with the speed of the processor is the memory cycle time, which is defined as
the time that has elapsed between two successive operations. The cycle time of the
processor is typically much shorter than the cycle time of memory.

When a processor initiates a transfer to or from memory, the processor's resources will
remain occupied for the entire duration of the memory cycle; furthermore, during this
period, no other device (for example, I/O controller, processor, or even the processor that
made the request) will be able to use the memory due to the transfer in progress:

Memory organization in the MIMD architecture

Solutions to the problem of memory access have resulted in a dichotomy of MIMD
architectures. The first type of system, known as the shared memory system, has high virtual
memory and all processors have equal access to data and instructions in this memory. The
other type of system is the distributed memory model, wherein each processor has local
memory that is not accessible to other processors.

Getting Started with Parallel Computing and Python Chapter 1

[16]

What distinguishes memory shared by distributed memory is the management of memory
access, which is performed by the processing unit; this distinction is very important for
programmers because it determines how different parts of a parallel program must
communicate.

In particular, a distributed memory machine must make copies of shared data in each local
memory. These copies are created by sending a message containing the data to be shared
from one processor to another. A drawback of this memory organization is that, sometimes,
these messages can be very large and take a relatively long time to transfer, while in a
shared memory system, there is no exchange of messages, and the main problem lies in
synchronizing access to shared resources.

Shared memory
The schema of a shared memory multiprocessor system is shown in the following diagram.
The physical connections here are quite simple:

Shared memory architecture schema

Here, the bus structure allows an arbitrary number of devices (CPU + Cache in the
preceding diagram) that share the same channel (Main Memory, as shown in the preceding
diagram). The bus protocols were originally designed to allow a single processor and one
or more disks or tape controllers to communicate through the shared memory here.

Each processor has been associated with cache memory, as it is assumed
that the probability that a processor needs to have data or instructions
present in the local memory is very high.

Getting Started with Parallel Computing and Python Chapter 1

[17]

The problem occurs when a processor modifies data stored in the memory system that is
simultaneously used by other processors. The new value will pass from the processor cache
that has been changed to the shared memory. Later, however, it must also be passed to all
the other processors, so that they do not work with the obsolete value. This problem is
known as the problem of cache coherency—a special case of the problem of memory
consistency, which requires hardware implementations that can handle concurrency issues
and synchronization, similar to that of thread programming.

The main features of shared memory systems are as follows:

The memory is the same for all processors. For example, all the processors
associated with the same data structure will work with the same logical memory
addresses, thus accessing the same memory locations.
The synchronization is obtained by reading the tasks of various processors and
allowing the shared memory. In fact, the processors can only access one memory
at a time.
A shared memory location must not be changed from a task while another task
accesses it.
Sharing data between tasks is fast. The time required to communicate is the time
that one of them takes to read a single location (depending on the speed of
memory access).

The memory access in shared memory systems is as follows:

Uniform Memory Access (UMA): The fundamental characteristic of this system
is the access time to the memory that is constant for each processor and for any
area of memory. For this reason, these systems are also called Symmetric
Multiprocessors (SMPs). They are relatively simple to implement, but not very
scalable. The coder is responsible for the management of the synchronization by
inserting appropriate controls, semaphores, locks, and more in the program that
manages resources.
Non-Uniform Memory Access (NUMA): These architectures divide the memory
into high-speed access area that is assigned to each processor, and also, a
common area for the data exchange, with slower access. These systems are also
called Distributed Shared Memory (DSM) systems. They are very scalable, but
complex to develop.
No Remote Memory Access (NoRMA): The memory is physically distributed
among the processors (local memory). All local memories are private and can
only access the local processor. The communication between the processors is
through a communication protocol used for exchanging messages, which is
known as the message-passing protocol.

Getting Started with Parallel Computing and Python Chapter 1

[18]

Cache-Only Memory Architecture (COMA): These systems are equipped with
only cached memories. While analyzing NUMA architectures, it was noticed that
this architecture kept the local copies of the data in the cache and that this data
was stored as duplicates in the main memory. This architecture removes
duplicates and keeps only the cached memories; the memory is physically
distributed among the processors (local memory). All local memories are private
and can only access the local processor. The communication between the
processors is also through the message-passing protocol.

Distributed memory
In a system with distributed memory, the memory is associated with each processor and a
processor is only able to address its own memory. Some authors refer to this type of system
as a multicomputer, reflecting the fact that the elements of the system are, themselves, small
and complete systems of a processor and memory, as you can see in the following diagram:

The distributed memory architecture schema

This kind of organization has several advantages:

There are no conflicts at the level of the communication bus or switch. Each
processor can use the full bandwidth of their own local memory without any
interference from other processors.
The lack of a common bus means that there is no intrinsic limit to the number of
processors. The size of the system is only limited by the network used to connect
the processors.
There are no problems with cache coherency. Each processor is responsible for its
own data and does not have to worry about upgrading any copies.

Getting Started with Parallel Computing and Python Chapter 1

[19]

The main disadvantage is that communication between processors is more difficult to
implement. If a processor requires data in the memory of another processor, then the two
processors should not necessarily exchange messages via the message-passing protocol.
This introduces two sources of slowdown: to build and send a message from one processor
to another takes time, and also, any processor should be stopped in order to manage the
messages received from other processors. A program designed to work on a distributed
memory machine must be organized as a set of independent tasks that communicate via
messages:

Basic message passing

The main features of distributed memory systems are as follows:

Memory is physically distributed between processors; each local memory is
directly accessible only by its processor.
Synchronization is achieved by moving data (even if it's just the message itself)
between processors (communication).
The subdivision of data in the local memories affects the performance of the
machine—it is essential to make subdivisions accurate, so as to minimize the
communication between the CPUs. In addition to this, the processor that
coordinates these operations of decomposition and composition must effectively
communicate with the processors that operate on the individual parts of data
structures.
The message-passing protocol is used so that the CPUs can communicate with
each other through the exchange of data packets. The messages are discrete units
of information, in the sense that they have a well-defined identity, so it is always
possible to distinguish them from each other.

Getting Started with Parallel Computing and Python Chapter 1

[20]

Massively Parallel Processing (MPP)
MPP machines are composed of hundreds of processors (which can be as large as hundreds
of thousands of processors in some machines) that are connected by a communication
network. The fastest computers in the world are based on these architectures; some
examples of these architecture systems are Earth Simulator, Blue Gene, ASCI White, ASCI
Red, and ASCI Purple and Red Storm.

Clusters of workstations
These processing systems are based on classical computers that are connected by
communication networks. Computational clusters fall into this classification.

In a cluster architecture, we define a node as a single computing unit that takes part in the
cluster. For the user, the cluster is fully transparent—all the hardware and software
complexity is masked and data and applications are made accessible as if they were all
from a single node.

Here, we've identified three types of clusters:

Fail-over cluster: In this, the node's activity is continuously monitored, and when
one stops working, another machine takes over the charge of those activities. The
aim is to ensure a continuous service due to the redundancy of the architecture.
Load balancing cluster: In this system, a job request is sent to the node that has
less activity. This ensures that less time is taken to process the job.
High-performance computing cluster: In this, each node is configured to
provide extremely high performance. The process is also divided into multiple
jobs on multiple nodes. The jobs are parallelized and will be distributed to
different machines.

Heterogeneous architectures
The introduction of GPU accelerators in the homogeneous world of supercomputing has
changed the nature of how supercomputers are both used and programmed now. Despite
the high performance offered by GPUs, they cannot be considered as an autonomous
processing unit as they should always be accompanied by a combination of CPUs. The
programming paradigm, therefore, is very simple: the CPU takes control and computes in a
serial manner, assigning tasks to the graphics accelerator that are, computationally, very
expensive and have a high degree of parallelism.

Getting Started with Parallel Computing and Python Chapter 1

[21]

The communication between a CPU and a GPU can take place, not only through the use of
a high-speed bus but also through the sharing of a single area of memory for both physical
or virtual memory. In fact, in the case where both the devices are not equipped with their
own memory areas, it is possible to refer to a common memory area using the software
libraries provided by the various programming models, such as CUDA and OpenCL.

These architectures are called heterogeneous architectures, wherein applications can create
data structures in a single address space and send a job to the device hardware, which is
appropriate for the resolution of the task. Several processing tasks can operate safely in the
same regions to avoid data consistency problems, thanks to the atomic operations.

So, despite the fact that the CPU and GPU do not seem to work efficiently together, with
the use of this new architecture, we can optimize their interaction with, and the
performance of, parallel applications:

The heterogeneous architecture schema

In the following section, we introduce the main parallel programming models.

Getting Started with Parallel Computing and Python Chapter 1

[22]

Parallel programming models
Parallel programming models exist as an abstraction of hardware and memory
architectures. In fact, these models are not specific and do not refer to any particular types
of machines or memory architectures. They can be implemented (at least theoretically) on
any kind of machines. Compared to the previous subdivisions, these programming models
are made at a higher level and represent the way in which the software must be
implemented to perform parallel computation. Each model has its own way of sharing
information with other processors in order to access memory and divide the work.

In absolute terms, no one model is better than the other. Therefore, the best solution to be
applied will depend very much on the problem that a programmer should address and
resolve. The most widely used models for parallel programming are as follows:

Shared memory model
Multithread model
Distributed memory/message passing model
Data-parallel model

In this recipe, we will give you an overview of these models.

Shared memory model
In this model, tasks share a single memory area in which we can read and write
asynchronously. There are mechanisms that allow the coder to control the access to the
shared memory; for example, locks or semaphores. This model offers the advantage that the
coder does not have to clarify the communication between tasks. An important
disadvantage, in terms of performance, is that it becomes more difficult to understand and
manage data locality. This refers to keeping data local to the processor that works on
conserving memory access, cache refreshes, and bus traffic that occurs when multiple
processors use the same data.

Getting Started with Parallel Computing and Python Chapter 1

[23]

Multithread model
In this model, a process can have multiple flows of execution. For example, a sequential
part is created and, subsequently, a series of tasks are created that can be executed in
parallel. Usually, this type of model is used on shared memory architectures. So, it will be
very important for us to manage the synchronization between threads, as they operate on
shared memory, and the programmer must prevent multiple threads from updating the
same locations at the same time.

The current-generation CPUs are multithreaded in software and hardware. POSIX (short
for Portable Operating System Interface) threads are classic examples of the
implementation of multithreading on software. Intel's Hyper-Threading technology
implements multithreading on hardware by switching between two threads when one is
stalled or waiting on I/O. Parallelism can be achieved from this model, even if the data
alignment is nonlinear.

Message passing model
The message passing model is usually applied in cases where each processor has its own
memory (distributed memory system). More tasks can reside on the same physical machine
or on an arbitrary number of machines. The coder is responsible for determining the
parallelism and data exchange that occurs through the messages, and it is necessary to
request and call a library of functions within the code.

Some of the examples have been around since the 1980s, but only in the mid-1990s was a
standardized model created, leading to a de facto standard called a Message Passing
Interface (MPI).

Getting Started with Parallel Computing and Python Chapter 1

[24]

The MPI model is clearly designed with distributed memory, but being models of parallel
programming, a multiplatform model can also be used with a shared memory machine:

Message passing paradigm model

Data-parallel model
In this model, we have more tasks that operate on the same data structure, but each task
operates on a different portion of data. In the shared memory architecture, all tasks have
access to data through shared memory and distributed memory architectures, where the
data structure is divided and resides in the local memory of each task.

Getting Started with Parallel Computing and Python Chapter 1

[25]

To implement this model, a coder must develop a program that specifies the distribution
and alignment of data; for example, the current-generation GPUs are highly operational
only if data (Task 1, Task 2, Task 3) is aligned, as shown in the following diagram:

The data-parallel paradigm model

Designing a parallel program
The design of algorithms that exploit parallelism is based on a series of operations, which
must be carried out for the program to perform the job correctly without producing partial
or erroneous results. The macro operations that must be carried out for a correct
parallelization of an algorithm are as follows:

Task decomposition
Task assignment
Agglomeration
Mapping

Getting Started with Parallel Computing and Python Chapter 1

[26]

Task decomposition
In this first phase, the software program is split into tasks or a set of instructions that can
then be executed on different processors to implement parallelism. To perform this
subdivision, two methods are used:

Domain decomposition: Here, the data of the problems is decomposed. The
application is common to all the processors that work on different portions of
data. This methodology is used when we have a large amount of data that must
be processed.
Functional decomposition: In this case, the problem is split into tasks, where
each task will perform a particular operation on all the available data.

Task assignment
In this step, the mechanism by which the tasks will be distributed among the various
processes is specified. This phase is very important because it establishes the distribution of
workload among the various processors. Load balancing is crucial here; in fact, all
processors must work with continuity, avoiding being in an idle state for a long time.

To perform this, the coder takes into account the possible heterogeneity of the system that
tries to assign more tasks to better-performing processors. Finally, for greater efficiency of
parallelization, it is necessary to limit communication as much as possible between
processors, as they are often the source of slowdowns and consumption of resources.

Agglomeration
Agglomeration is the process of combining smaller tasks with larger ones in order to
improve performance. If the previous two stages of the design process partitioned the
problem into a number of tasks that greatly exceed the number of processors available, and
if the computer is not specifically designed to handle a huge number of small tasks (some
architectures, such as GPUs, handle this fine and indeed benefit from running millions, or
even billions, of tasks), then the design can turn out to be highly inefficient.

Commonly, this is because tasks have to be communicated to the processor or thread so
that they compute the said task. Most communications have costs that are
disproportionate to the amount of data transferred, but also incur a fixed cost for every
communication operation (such as the latency, which is inherent in setting up a TCP
connection). If the tasks are too small, then this fixed cost can easily make the design
inefficient.

Getting Started with Parallel Computing and Python Chapter 1

[27]

Mapping
In the mapping stage of the parallel algorithm design process, we specify where each task is
to be executed. The goal is to minimize the total execution time. Here, you must often make
trade-offs, as the two main strategies often conflict with each other:

The tasks that communicate frequently should be placed in the same processor to
increase locality.
The tasks that can be executed concurrently should be placed in different
processors to enhance concurrency.

This is known as the mapping problem, and it is known to be NP-complete. As such, no
polynomial-time solutions to the problem in the general case exist. For tasks of equal size
and tasks with easily identified communication patterns, the mapping is straightforward
(we can also perform agglomeration here to combine tasks that map to the same processor).
However, if the tasks have communication patterns that are hard to predict or the amount
of work varies per task, then it is hard to design an efficient mapping and agglomeration
scheme.

For these types of problems, load balancing algorithms can be used to identify
agglomeration and mapping strategies during runtime. The hardest problems are those in
which the amount of communication or the number of tasks changes during the execution
of the program. For these kinds of problems, dynamic load balancing algorithms can be
used, which run periodically during the execution.

Dynamic mapping
Numerous load balancing algorithms exist for a variety of problems:

Global algorithms: These require global knowledge of the computation being
performed, which often adds a lot of overhead.
Local algorithms: These rely only on information that is local to the task in
question, which reduces overhead compared to global algorithms, but they are
usually worse at finding optimal agglomeration and mapping.

However, the reduced overhead may reduce the execution time, even though the mapping
is worse by itself. If the tasks rarely communicate other than at the start and end of the
execution, then a task-scheduling algorithm is often used, which simply maps tasks to
processors as they become idle. In a task-scheduling algorithm, a task pool is maintained.
Tasks are placed in this pool and are taken from it by workers.

Getting Started with Parallel Computing and Python Chapter 1

[28]

There are three common approaches in this model:

Manager/worker: This is the basic dynamic mapping scheme in which all the
workers connect to a centralized manager. The manager repeatedly sends tasks
to the workers and collects the results. This strategy is probably the best for a
relatively small number of processors. The basic strategy can be improved by
fetching tasks in advance so that communication and computation overlap each
other.
Hierarchical manager/worker: This is the variant of a manager/worker that has a
semi-distributed layout. Workers are split into groups, each with their own
manager. These group managers communicate with the central manager (and
possibly among themselves as well), while workers request tasks from the group
managers. This spreads the load among several managers and can, as such,
handle a larger number of processors if all workers request tasks from the same
manager.
Decentralize: In this scheme, everything is decentralized. Each processor
maintains its own task pool and communicates with the other processors in order
to request tasks. How the processors choose other processors to request tasks
varies and is determined on the basis of the problem.

Evaluating the performance of a parallel
program
The development of parallel programming created the need for performance metrics in
order to decide whether its use is convenient or not. Indeed, the focus of parallel computing
is to solve large problems in a relatively short period of time. The factors contributing to
this objective are, for example, the type of hardware used, the degree of parallelism of the
problem, and the parallel programming model adopted. To facilitate this, the analysis of
basic concepts was introduced, which compares the parallel algorithm obtained from the
original sequence.

The performance is achieved by analyzing and quantifying the number of threads and/or
the number of processes used. To analyze this, let's introduce a few performance indexes:

Speedup
Efficiency
Scaling

Getting Started with Parallel Computing and Python Chapter 1

[29]

The limitations of parallel computation are introduced by Amdahl's law. To evaluate the
degree of efficiency of the parallelization of a sequential algorithm, we have Gustafson's law.

Speedup
The speedup is the measure that displays the benefit of solving a problem in parallel. It is
defined as the ratio of the time taken to solve a problem on a single processing element (Ts)
to the time required to solve the same problem on p identical processing elements (Tp).

We denote speedup as follows:

We have a linear speedup, where if S=p, then it means that the speed of execution increases
with the number of processors. Of course, this is an ideal case. While the speedup is
absolute when Ts is the execution time of the best sequential algorithm, the speedup is
relative when Ts is the execution time of the parallel algorithm for a single processor.

Let's recap these conditions:

S = p is a linear or ideal speedup.
S < p is a real speedup.
S > p is a superlinear speedup.

Efficiency
In an ideal world, a parallel system with p processing elements can give us a speedup that
is equal to p. However, this is very rarely achieved. Usually, some time is wasted in either
idling or communicating. Efficiency is a measure of how much of the execution time a
processing element puts toward doing useful work, given as a fraction of the time spent.

We denote it by E and can define it as follows:

Getting Started with Parallel Computing and Python Chapter 1

[30]

The algorithms with linear speedup have a value of E = 1. In other cases, they have the
value of E is less than 1. The three cases are identified as follows:

When E = 1, it is a linear case.
When E < 1, it is a real case.
When E << 1, it is a problem that is parallelizable with low efficiency.

Scaling
Scaling is defined as the ability to be efficient on a parallel machine. It identifies the
computing power (speed of execution) in proportion to the number of processors. By
increasing the size of the problem and, at the same time, the number of processors, there
will be no loss in terms of performance.

The scalable system, depending on the increments of the different factors, may maintain the
same efficiency or improve it.

Amdahl's law
Amdahl's law is a widely used law that is used to design processors and parallel
algorithms. It states that the maximum speedup that can be achieved is limited by the serial
component of the program:

1 – P denotes the serial component (not parallelized) of a program.

This means that, for example, if a program in which 90% of the code can be made parallel,
but 10% must remain serial, then the maximum achievable speedup is 9, even for an infinite
number of processors.

Getting Started with Parallel Computing and Python Chapter 1

[31]

Gustafson's law
Gustafson's law states the following:

Here, as we indicated in the equation the following applies:

P is the number of processors.
S is the speedup factor.
α is the non-parallelizable fraction of any parallel process.

Gustafson's law is in contrast to Amdahl's law, which, as we described, assumes that the
overall workload of a program does not change with respect to the number of processors.

In fact, Gustafson's law suggests that programmers first set the time allowed for solving a
problem in parallel and then based on that (that is time) to size the problem. Therefore,
the faster the parallel system is, the greater the problems that can be solved over the same
period of time.

The effect of Gustafson's law was to direct the objectives of computer research towards the
selection or reformulation of problems in such a way that the solution of a larger problem
would still be possible in the same amount of time. Furthermore, this law redefines the
concept of efficiency as a need to reduce at least the sequential part of a program, despite the
increase in workload.

Introducing Python
Python is a powerful, dynamic, and interpreted programming language that is used in a
wide variety of applications. Some of its features are as follows:

A clear and readable syntax.
A very extensive standard library, where, through additional software modules,
we can add data types, functions, and objects.
Easy-to-learn rapid development and debugging. Developing Python code in
Python can be up to 10 times faster than in C/C++ code. The code can also work
as a prototype and then translated into C/C ++.
Exception-based error handling.
A strong introspection functionality.
The richness of documentation and a software community.

Getting Started with Parallel Computing and Python Chapter 1

[32]

Python can be seen as a glue language. Using Python, better applications can be developed
because different kinds of coders can work together on a project. For example, when
building a scientific application, C/C++ programmers can implement efficient numerical
algorithms, while scientists on the same project can write Python programs that test and
use those algorithms. Scientists don't have to learn a low-level programming language and
C/C++ programmers don't need to understand the science involved.

You can read more about this from https:/ /www. python. org/ doc/
essays/ omg- darpa- mcc- position.

Let's take a look at some examples of very basic code to get an idea of the features of
Python.

The following section can be a refresher for most of you. We will use these
techniques practically in Chapter 2, Thread-Based Parallelism, and Chapter
3, Process-Based Parallelism.

Help functions
The Python interpreter already provides a valid help system. If you want to know how to
use an object, then just type help(object).

Let's see, for example, how to use the help function on integer 0:

>>> help(0)
Help on int object:

class int(object)
 | int(x=0) -> integer
 | int(x, base=10) -> integer
 |
 | Convert a number or string to an integer, or return 0 if no
 | arguments are given. If x is a number, return x.__int__(). For
 | floating point numbers, this truncates towards zero.
 |
 | If x is not a number or if base is given, then x must be a string,
 | bytes, or bytearray instance representing an integer literal in the
 | given base. The literal can be preceded by '+' or '-' and be
 | surrounded by whitespace. The base defaults to 10. Valid bases are 0
 | and 2-36.
 | Base 0 means to interpret the base from the string as an integer

https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position
https://www.python.org/doc/essays/omg-darpa-mcc-position

Getting Started with Parallel Computing and Python Chapter 1

[33]

 | literal.
>>> int('0b100', base=0)

The description of the int object is followed by a list of methods that are applicable to it.
The first five methods are as follows:

 | Methods defined here:
 |
 | __abs__(self, /)
 | abs(self)
 |
 | __add__(self, value, /)
 | Return self+value.
 |
 | __and__(self, value, /)
 | Return self&value.
 |
 | __bool__(self, /)
 | self != 0
 |
 | __ceil__(...)
 | Ceiling of an Integral returns itself.

Also useful is dir(object), which lists the methods available for an object:

>>> dir(float)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__',
'__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__',
'__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__',
'__getnewargs__', '__gt__', '__hash__', '__index__', '__init__', '__int__',
'__invert__', '__le__', '__lshift__', '__lt__', '__mod__', '__mul__',
'__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__',
'__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__',
'__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__',
'__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__',
'__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__',
'__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__',
'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag',
'numerator', 'real', 'to_bytes']

Finally, the relevant documentation for an object is provided by the .__doc__ function, as
shown in the following example:

>>> abs.__doc__
'Return the absolute value of the argument.'

Getting Started with Parallel Computing and Python Chapter 1

[34]

Syntax
Python doesn't adopt statement terminators, and code blocks are specified through
indentation. Statements that expect an indentation level must end in a colon (:). This leads
to the following:

The Python code is clearer and more readable.
The program structure always coincides with that of the indentation.
The style of indentation is uniform in any listing.

Bad indentation can lead to errors.

The following example shows how to use the if construct:

print("first print")
if condition:
 print(“second print”)
print(“third print”)

In this example, we can see the following:

The following statements: print("first print"), if condition:,
print("third print") have the same indentation level and are always
executed.
After the if statement, there is a block of code with a higher indentation level,
which includes the print ("second print") statement.
If the condition of if is true, then the print ("second print") statement is
executed.
If the condition of if is false, then the print ("second print") statement is
not executed.

It is, therefore, very important to pay attention to indentation because it is always evaluated
in the program parsing process.

Getting Started with Parallel Computing and Python Chapter 1

[35]

Comments
Comments start with the hash sign (#) and are on a single line:

single line comment

Multi-line strings are used for multi-line comments:

""" first line of a multi-line comment
second line of a multi-line comment."""

Assignments
Assignments are made with the equals symbol (=). For equality tests, the same amount (==)
is used. You can increase and decrease a value using the += and -= operators, followed by
an addendum. This works with many types of data, including strings. You can assign and
use multiple variables on the same line.

Some examples are as follows:

>>> variable = 3
>>> variable += 2
>>> variable
5
>>> variable -= 1
>>> variable
4

>>> _string_ = "Hello"
>>> _string_ += " Parallel Programming CookBook Second Edition!"
>>> print (_string_)
Hello Parallel Programming CookBook Second Edition!

Data types
The most significant structures in Python are lists, tuples, and dictionaries. Sets have been
integrated into Python since version 2.5 (the previous versions are available in the sets
library):

Lists: These are similar to one-dimensional arrays, but you can create lists that
contain other lists.
Dictionaries: These are arrays that contain key pairs and values (hash tables).
Tuples: These are immutable mono-dimensional objects.

Getting Started with Parallel Computing and Python Chapter 1

[36]

Arrays can be of any type, so you can mix variables such as integers and strings into your
lists, dictionaries and tuples.

The index of the first object in any type of array is always zero. Negative indexes are
allowed and count from the end of the array; -1 indicates the last element of the array:

#let's play with lists
list_1 = [1, ["item_1", "item_1"], ("a", "tuple")]
list_2 = ["item_1", -10000, 5.01]

>>> list_1
[1, ['item_1', 'item_1'], ('a', 'tuple')]

>>> list_2
['item_1', -10000, 5.01]

>>> list_1[2]
('a', 'tuple')

>>>list_1[1][0]
['item_1', 'item_1']

>>> list_2[0]
item_1

>>> list_2[-1]
5.01

#build a dictionary
dictionary = {"Key 1": "item A", "Key 2": "item B", 3: 1000}
>>> dictionary
{'Key 1': 'item A', 'Key 2': 'item B', 3: 1000}

>>> dictionary["Key 1"]
item A

>>> dictionary["Key 2"]
-1

>>> dictionary[3]
1000

Getting Started with Parallel Computing and Python Chapter 1

[37]

You can get an array range using the colon (:):

list_3 = ["Hello", "Ruvika", "how" , "are" , "you?"]
>>> list_3[0:6]
['Hello', 'Ruvika', 'how', 'are', 'you?']

>>> list_3[0:1]
['Hello']

>>> list_3[2:6]
['how', 'are', 'you?']

Strings
Python strings are indicated using either the single (') or double (") quotation mark and
they are allowed to use one notation within a string delimited by the other:

>>> example = "she loves ' giancarlo"
>>> example
"she loves ' giancarlo"

On multiple lines, they are enclosed in triple (or three single) quotation marks (''' multi-
line string '''):

>>> _string_='''I am a
multi-line
string'''
>>> _string_
'I am a \nmulti-line\nstring'

Python also supports Unicode; just use the u "This is a unicode string" syntax :

>>> ustring = u"I am unicode string"
>>> ustring
'I am unicode string'

To enter values in a string, type the % operator and a tuple. Then, each % operator is
replaced by a tuple element, from left to right:

>>> print ("My name is %s !" % ('Mr. Wolf'))
My name is Mr. Wolf!

Getting Started with Parallel Computing and Python Chapter 1

[38]

Flow control
Flow control instructions are if, for, and while.

In the next example, we check whether the number is positive, negative, or zero and
display the result:

num = 1

if num > 0:
 print("Positive number")
elif num == 0:
 print("Zero")
else:
 print("Negative number")

The following code block finds the sum of all the numbers stored in a list, using a for loop:

numbers = [6, 6, 3, 8, -3, 2, 5, 44, 12]
sum = 0
for val in numbers:
 sum = sum+val
print("The sum is", sum)

We will execute the while loop to iterate the code until the condition result is true. We will
use this loop over the for loop since we are unaware of the number of iterations that will
result in the code. In this example, we use while to add natural numbers up to sum =
1+2+3+...+n:

n = 10
initialize sum and counter
sum = 0
i = 1
while i <= n:
 sum = sum + i
 i = i+1 # update counter

print the sum
print("The sum is", sum)

The outputs for the preceding three examples are as follows:

Positive number
The sum is 83
The sum is 55
>>>

Getting Started with Parallel Computing and Python Chapter 1

[39]

Functions
Python functions are declared with the def keyword:

def my_function():
 print("this is a function")

To run a function, use the function name, followed by parentheses, as follows:

>>> my_function()
this is a function

Parameters must be specified after the function name, inside the parentheses:

def my_function(x):
 print(x * 1234)

>>> my_function(7)
8638

Multiple parameters must be separated with a comma:

def my_function(x,y):
 print(x*5+ 2*y)

>>> my_function(7,9)
53

Use the equals sign to define a default parameter. If you call the function without the
parameter, then the default value will be used:

def my_function(x,y=10):
 print(x*5+ 2*y)

>>> my_function(1)
25

>>> my_function(1,100)
205

The parameters of a function can be of any type of data (such as string, number, list, and
dictionary). Here, the following list, lcities, is used as a parameter for my_function:

def my_function(cities):
 for x in cities:
 print(x)

>>> lcities=["Napoli","Mumbai","Amsterdam"]

Getting Started with Parallel Computing and Python Chapter 1

[40]

>>> my_function(lcities)
Napoli
Mumbai
Amsterdam

Use the return statement to return a value from a function:

def my_function(x,y):
 return x*y

>>> my_function(6,29)
174

Python supports an interesting syntax that allows you to define small, single-line functions
on the fly. Derived from the Lisp programming language, these lambda functions can be
used wherever a function is required.

An example of a lambda function, functionvar, is shown as follows:

lambda definition equivalent to def f(x): return x + 1

functionvar = lambda x: x * 5
>>> print(functionvar(10))
50

Classes
Python supports multiple inheritances of classes. Conventionally (not a language rule),
private variables and methods are declared by being preceded with two underscores (__).
We can assign arbitrary attributes (properties) to the instances of a class, as shown in the
following example:

class FirstClass:
 common_value = 10
 def __init__ (self):
 self.my_value = 100
 def my_func (self, arg1, arg2):
 return self.my_value*arg1*arg2

Build a first instance
>>> first_instance = FirstClass()
>>> first_instance.my_func(1, 2)
200

Build a second instance of FirstClass
>>> second_instance = FirstClass()

Getting Started with Parallel Computing and Python Chapter 1

[41]

#check the common values for both the instances
>>> first_instance.common_value
10

>>> second_instance.common_value
10

#Change common_value for the first_instance
>>> first_instance.common_value = 1500
>>> first_instance.common_value
1500

#As you can note the common_value for second_instance is not changed
>>> second_instance.common_value
10

SecondClass inherits from FirstClass.
multiple inheritance is declared as follows:
class SecondClass (FirstClass1, FirstClass2, FirstClassN)

class SecondClass (FirstClass):
 # The "self" argument is passed automatically
 # and refers to the class's instance
 def __init__ (self, arg1):
 self.my_value = 764
 print (arg1)

>>> first_instance = SecondClass ("hello PACKT!!!!")
hello PACKT!!!!

>>> first_instance.my_func (1, 2)
1528

Exceptions
Exceptions in Python are managed with try-except blocks (exception_name):

def one_function():
 try:
 # Division by zero causes one exception
 10/0
 except ZeroDivisionError:
 print("Oops, error.")
 else:
 # There was no exception, we can continue.

Getting Started with Parallel Computing and Python Chapter 1

[42]

 pass
 finally:
 # This code is executed when the block
 # try..except is already executed and all exceptions
 # have been managed, even if a new one occurs
 # exception directly in the block.
 print("We finished.")

>>> one_function()
Oops, error.
We finished

Importing libraries
External libraries are imported with import [library name]. Alternatively, you can use
the from [library name] import [function name] syntax to import a specific
function. Here is an example:

import random
randomint = random.randint(1, 101)

>>> print(randomint)
65

from random import randint
randomint = random.randint(1, 102)

>>> print(randomint)
46

Managing files
To allow us to interact with the filesystem, Python provides us with the built-
in open function. This function can be invoked to open a file and return an object file. The
latter allows us to perform various operations on the file, such as reading and writing.
When we have finished interacting with the file, we must finally remember to close it by
using the file.close method:

>>> f = open ('test.txt', 'w') # open the file for writing
>>> f.write ('first line of file \ n') # write a line in file
>>> f.write ('second line of file \ n') # write another line in file
>>> f.close () # we close the file
>>> f = open ('test.txt') # reopen the file for reading
>>> content = f.read () # read all the contents of the file

Getting Started with Parallel Computing and Python Chapter 1

[43]

>>> print (content)
first line of the file
second line of the file
>>> f.close () # close the file

List comprehensions
List comprehensions are a powerful tool for creating and manipulating lists. They consist of
an expression that is followed by a for clause and then followed by zero, or more, if
clauses. The syntax for list comprehensions is simply the following:

[expression for item in list]

Then, perform the following:

#list comprehensions using strings
>>> list_comprehension_1 = [x for x in 'python parallel programming
cookbook!']
>>> print(list_comprehension_1)

['p', 'y', 't', 'h', 'o', 'n', ' ', 'p', 'a', 'r', 'a', 'l', 'l', 'e', 'l',
' ', 'p', 'r', 'o', 'g', 'r', 'a', 'm', 'm', 'i', 'n', 'g', ' ', 'c', 'o',
'o', 'k', 'b', 'o', 'o', 'k', '!']

#list comprehensions using numbers
>>> l1 = [1,2,3,4,5,6,7,8,9,10]
>>> list_comprehension_2 = [x*10 for x in l1]
>>> print(list_comprehension_2)

[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Running Python scripts
To execute a Python script, simply invoke the Python interpreter followed by the script
name, in this case, my_pythonscript.py. Or, if we are in a different working directory,
then use its full address:

> python my_pythonscript.py

Getting Started with Parallel Computing and Python Chapter 1

[44]

From now on, for every invocation of a Python script, we will use the
preceding notation; that is, python, followed by script_name.py,
assuming that the directory from which the Python interpreter is launched
is the one where the script to be executed resides.

Installing Python packages using pip
pip is a tool that allows us to search, download, and install Python packages found on the
Python Package Index, which is a repository that contains tens of thousands of packages
written in Python. This also allows us to manage the packages we have already
downloaded, allowing us to update or remove them.

Installing pip
pip is already included in Python versions ≥ 3.4 and ≥ 2.7.9. To check whether this tool is
already installed, we can run the following command:

C:\>pip

 If pip is already installed, then this command will show us the installed version.

Updating pip
It is also recommended to check that the pip version you are using is always up to date. To
update it, we can use the following command:

 C:\>pip install -U pip

Using pip
pip supports a series of commands that allow us, among other things, to search, download,
install, update, and remove packages.

To install PACKAGE, just run the following command:

C:\>pip install PACKAGE

Getting Started with Parallel Computing and Python Chapter 1

[45]

Introducing Python parallel programming
Python provides many libraries and frameworks that facilitate high-performance
computations. However, doing parallel programming with Python can be quite insidious
due to the Global Interpreter Lock (GIL).

In fact, the most widespread and widely used Python interpreter, CPython, is developed in
the C programming language. The CPython interpreter needs GIL for thread-safe
operations. The use of GIL implies that you will encounter a global lock when you attempt
to access any Python objects contained within threads. And only one thread at a time can
acquire the lock for a Python object or C API.

Fortunately, things are not so serious, because, outside the realm of GIL, we can freely use
parallelism. This category includes all the topics that we will discuss in the next chapters,
including multiprocessing, distributed computing, and GPU computing.

So, Python is not really multithreaded. But what is a thread? What is a process? In the
following sections, we will introduce these two fundamental concepts and how they are
addressed by the Python programming language.

Processes and threads
Threads can be compared to light processes, in the sense that they offer advantages similar
to those of processes, without, however, requiring the typical communication techniques of
processes. Threads allow you to divide the main control flow of a program into multiple
concurrently running control streams. Processes, by contrast, have their own addressing space
and their own resources. It follows that communication between parts of code running on
different processes can only take place through appropriate management mechanisms,
including pipes, code FIFO, mailboxes, shared memory areas, and message passing.
Threads, on the other hand, allow the creation of concurrent parts of the program, in which
each part can access the same address space, variables, and constants.

Getting Started with Parallel Computing and Python Chapter 1

[46]

The following table summarizes the main differences between threads and processes:

Threads Processes
Share memory. Do not share memory.
Start/change are computationally less
expensive.

Start/change are computationally
expensive.

Require fewer resources (light
processes). Require more computational resources.

Need synchronization mechanisms to
handle data correctly. No memory synchronization is required.

After this brief introduction, we can finally show how processes and threads operate.

In particular, we want to compare the serial, multithread, and multiprocess execution times
of the following function, do_something, which performs some basic calculations,
including building a list of integers selected randomly (a do_something.py file):

import random

def do_something(count, out_list):
 for i in range(count):
 out_list.append(random.random())

Next, there is the serial (serial_test.py) implementation. Let's start with the relevant
imports:

from do_something import *
import time

Note the importing of the module time, which will be used to evaluate the execution time,
in this instance, and the serial implementation of the do_something function. size of the
list to build is equal to 10000000, while the do_something function will be executed 10
times:

if __name__ == "__main__":
 start_time = time.time()
 size = 10000000
 n_exec = 10
 for i in range(0, exec):
 out_list = list()
 do_something(size, out_list)
 print ("List processing complete.")
 end_time = time.time()
 print("serial time=", end_time - start_time)

Getting Started with Parallel Computing and Python Chapter 1

[47]

Next, we have the multithreaded implementation (multithreading_test.py).

Import the relevant libraries:

from do_something import *
import time
import threading

Note the import of the threading module in order to operate with the multithreading
capabilities of Python.

Here, there is the multithreading execution of the do_something function. We will not
comment in-depth on the instructions in the following code, as they will be discussed in
more detail in Chapter 2, Thread-Based Parallelism.

However, it should be noted in this case, too, that the length of the list is obviously the
same as in the serial case, size = 10000000, while the number of threads defined is 10,
threads = 10, which is also the number of times the do_something function must be
executed:

if __name__ == "__main__":
 start_time = time.time()
 size = 10000000
 threads = 10
 jobs = []
 for i in range(0, threads):

Note also the construction of the single thread, through the threading.Thread method:

out_list = list()
thread = threading.Thread(target=list_append(size,out_list))
jobs.append(thread)

The sequence of cycles in which we start executing threads and then stop them
immediately afterwards is as follows:

 for j in jobs:
 j.start()
 for j in jobs:
 j.join()

 print ("List processing complete.")
 end_time = time.time()
 print("multithreading time=", end_time - start_time)

Finally, there is the multiprocessing implementation (multiprocessing_test.py).

Getting Started with Parallel Computing and Python Chapter 1

[48]

We start by importing the necessary modules and, in particular, the multiprocessing
library, whose features will be explained in-depth in Chapter 3, Process-Based Parallelism:

from do_something import *
import time
import multiprocessing

As in the previous cases, the length of the list to build, the size, and the execution number
of the do_something function remain the same (procs = 10):

if __name__ == "__main__":
 start_time = time.time()
 size = 10000000
 procs = 10
 jobs = []
 for i in range(0, procs):
 out_list = list()

Here, the implementation of a single process through the multiprocessing.Process
method call is affected as follows:

 process = multiprocessing.Process\
 (target=do_something,args=(size,out_list))
 jobs.append(process)

Next, the sequence of cycles in which we start executing processes and then stop them
immediately afterwards is executed as follows:

 for j in jobs:
 j.start()

 for j in jobs:
 j.join()

 print ("List processing complete.")
 end_time = time.time()
 print("multiprocesses time=", end_time - start_time)

Then, we open the command shell and run the three functions described previously.

Go to the folder where the functions have been copied and then type the following:

> python serial_test.py

Getting Started with Parallel Computing and Python Chapter 1

[49]

The result, obtained on a machine with the following features—CPU Intel i7/8 GB of
RAM, is as follows:

List processing complete.
serial time= 25.428767204284668

In the case of the multithreading implementation, we have the following:

> python multithreading_test.py

The output is as follows:

List processing complete.
multithreading time= 26.168917179107666

Finally, there is the multiprocessing implementation:

> python multiprocessing_test.py

Its result is as follows:

List processing complete.
multiprocesses time= 18.929869890213013

As can be seen, the results of the serial implementation (that is, using serial_test.py)
are similar to those obtained with the implementation of multithreading (using
multithreading_test.py) where the threads are essentially launched one after the other,
giving precedence to the one over the other until the end, while we have benefits in terms
of execution times using the Python multiprocessing capability
(using multiprocessing_test.py).

2
Thread-Based Parallelism

Currently, the most widely used programming paradigm for the management of
concurrency in software applications is based on multithreading. Generally, an application
is made by a single process that is divided into multiple independent threads, which
represent activities of different types that run in parallel and compete with each other.

Nowadays, modern applications that use multithreading have been adopted on a massive
scale. In fact, all current processors are multicore, just so they can perform parallel
operations and exploit the computer's computational resources.

Hence, multithreaded programming is definitely a good way to achieve concurrent
applications. However, multithreaded programming often hides some non-trivial
difficulties, which must be managed appropriately to avoid errors such
as deadlocks or synchronization issues.

We will first define the concepts of thread-based and multithreaded programming and then
introduce the multithreading library. We will learn about the main directives for thread
definition, management, and communication.

Through the multithreading library, we will see how to solve problems through different
techniques, such as lock, RLock, semaphores, condition, event, barrier, and queue.

In this chapter, we will cover the following recipes:

What is a thread?
How to define a thread
How to determine the current thread
How to use a thread in a subclass
Thread synchronization with a lock
Thread synchronization with an RLock

Thread-Based Parallelism Chapter 2

[51]

Thread synchronization with semaphores
Thread synchronization with a condition
Thread synchronization with an event
Thread synchronization with a barrier
Thread communication using a queue

We will also explore the main options offered by Python to program with threads. To do
this, we will focus on using the threading module.

What is a thread?
A thread is an independent execution flow that can be executed in parallel and concurrently
with other threads in the system.

Multiple threads can share data and resources, taking advantage of the so-called space of
shared information. The specific implementation of threads and processes depends on the
OS on which you plan to run the application, but, in general, it can be stated that a thread is
contained inside a process and that different threads in the same process conditions share
some resources. In contrast to this, different processes do not share their own resources
with other processes.

A thread is composed of three elements: program counters, registers, and stack. Shared
resources with other threads of the same process essentially include data and OS resources.
Moreover, threads have their own state of execution, namely, thread state, and can be
synchronized with other threads.

A thread state can be ready, running, or blocked:

When a thread is created, it enters the Ready state.
A thread is scheduled for execution by the OS (or by the runtime support system)
and, when its turn arrives, it begins execution by going into the Running state.
The thread can wait for a condition to occur, passing from the Running state to
the Blocked state. Once the locked condition is terminated, the Blocked thread
returns to the Ready state:

Thread-Based Parallelism Chapter 2

[52]

Thread life cycle

The main advantage of multithreading programming lies in performances, as the context
switch between processes turns out to be much heavier than the switch context between
threads that belong to the same process.

In the next recipes, until the end of the chapter, we will examine the Python threading
module, introducing its main functions through programming examples.

Python threading module
Python manages threads with the threading module provided by the Python standard
library. This module provides some very interesting features that make the threading-based
approach a whole lot easier; in fact, the threading module provides several
synchronization mechanisms that are very simple to implement.

The major components of the threading module are as follows:

The thread object
The lock object
The RLock object
The semaphore object
The condition object
The event object

Thread-Based Parallelism Chapter 2

[53]

In the following recipes, we examine the features offered by the threading library with
different application examples. For the examples that follow, we will refer to the Python
3.5.0 distribution (https:/ / www. python. org/downloads/ release/ python- 350/).

Defining a thread
The simplest way to use a thread is to instantiate it with a target function and then call the
start method to let it begin the job.

Getting ready
The Python threading module provides a Thread class that is used to run processes and
functions in a different thread:

class threading.Thread(group=None,
 target=None,
 name=None,
 args=(),
 kwargs={})

Here are the parameters of the Thread class:

group: This is the group value, which should be None; this is reserved for future
implementations.
target: This is the function that is to be executed when you start a thread
activity.
name: This is the name of the thread; by default, a unique name of the form of
Thread-N is assigned to it.
args: This is the tuple of arguments that are to be passed to a target.
kwargs: This is the dictionary of keyword arguments that are to be used for the
target function.

In the next section, let's learn about how to define a thread.

https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/

Thread-Based Parallelism Chapter 2

[54]

How to do it...
We'll define a thread by passing it a number, which represents the thread number, and
finally, the result will be printed out:

Import the threading module by using the following Python command:1.

import threading

In the main program, a Thread object is instantiated with a target function2.
called my_func. Then, an argument to the function that will be included in the
output message is passed:

t = threading.Thread(target=function , args=(i,))

The thread does not start running until the start method is called, and the join3.
method makes the calling thread and waits until the thread has finished the
execution, as follows:

import threading

def my_func(thread_number):
 return print('my_func called by thread N°\
 {}'.format(thread_number))

def main():
 threads = []
 for i in range(10):
 t = threading.Thread(target=my_func, args=(i,))
 threads.append(t)
 t.start()
 t.join()

if __name__ == "__main__":
 main()

Thread-Based Parallelism Chapter 2

[55]

How it works...
In the main program, we initialize the thread's list, to which we add the instance of each
thread that is created. The total number of threads created is 10, while the i-index for the ith

thread is passed as an argument to the ith thread:

my_func called by thread N°0
my_func called by thread N°1
my_func called by thread N°2
my_func called by thread N°3
my_func called by thread N°4
my_func called by thread N°5
my_func called by thread N°6
my_func called by thread N°7
my_func called by thread N°8
my_func called by thread N°9

There's more...
All current processors are multicore, thus offering the possibility of performing multiple
parallel operations and making the most of the computer's computational resources.
Although this is true, multithread programming hides a number of non-trivial difficulties,
which must be managed appropriately to avoid errors such as deadlocks or
synchronization problems.

Determining the current thread
Using arguments to identify or name the thread is cumbersome and unnecessary. Each
Thread instance has a name with a default value that can be changed as the thread is
created.

Naming threads is useful in server processes with multiple service threads that handle
different operations.

Getting ready
This threading module provides the currentThread().getName() method, which
returns the name of the current thread.

Thread-Based Parallelism Chapter 2

[56]

The following section shows us how to use this function to determine which thread is
running.

How to do it...
Let's have a look at the following steps:

To determine which thread is running, we create three target functions and1.
import the time module to introduce a suspended execution of two seconds:

import threading
import time

def function_A():
 print (threading.currentThread().getName()+str('-->\
 starting \n'))
 time.sleep(2)
 print (threading.currentThread().getName()+str('-->\
 exiting \n'))
def function_B():
 print (threading.currentThread().getName()+str('-->\
 starting \n'))
 time.sleep(2)
 print (threading.currentThread().getName()+str('-->\
 exiting \n'))
def function_C():
 print (threading.currentThread().getName()+str('-->\
 starting \n'))
 time.sleep(2)
 print (threading.currentThread().getName()+str('-->\
 exiting \n'))

Three threads are instantiated with a target function. Then, we pass the name2.
that is to be printed and, if it is not defined, then the default name will be used.
Then, the start() and join() methods are called for each thread:

if __name__ == "__main__":

 t1 = threading.Thread(name='function_A', target=function_A)
 t2 = threading.Thread(name='function_B', target=function_B)
 t3 = threading.Thread(name='function_C',target=function_C)

 t1.start()
 t2.start()
 t3.start()

Thread-Based Parallelism Chapter 2

[57]

 t1.join()
 t2.join()
 t3.join()

How it works...
We are going to set up three threads, each of which is assigned a target function. When
the target function is executed and terminated, the function name is appropriately printed
out.

For this example, the output should look like this (even if the order shown cannot be the
same):

function_A--> starting
function_B--> starting
function_C--> starting

function_A--> exiting
function_B--> exiting
function_C--> exiting

Defining a thread subclass
Creating a thread can require the definition of a subclass, which inherits from the Thread
class. The latter, as explained in Defining a thread section, is included in the threading
module, which must then be imported.

Getting ready
The class that we will define in the next section, which represents our thread, respects a
precise structure: we will first have to define the __init__ method, but, above all, we will
have to override the run method.

Thread-Based Parallelism Chapter 2

[58]

How to do it...
The steps involved are as follows:

We defined the MyThreadClass class, which we can use to create all the threads1.
we want. Each thread of this type will be characterized by the operations defined
in the run method, which, in this simple example, limits itself to printing a string
at the beginning and at the end of its execution:

import time
import os
from random import randint
from threading import Thread

class MyThreadClass (Thread):

Furthermore, in the __init__ method, we have specified two initialization2.
parameters, respectively, name and duration, that will be used in the run
method:

def __init__(self, name, duration):
 Thread.__init__(self)
 self.name = name
 self.duration = duration

 def run(self):
 print ("---> " + self.name +\
 " running, belonging to process ID "\
 + str(os.getpid()) + "\n")
 time.sleep(self.duration)
 print ("---> " + self.name + " over\n")

These parameters will then be set during the creation of the thread. In particular,3.
the duration parameter is computed using the randint function that outputs a
random integer between 1 and 10. Starting from the definition of
MyThreadClass, let's see how to instantiate more threads, as follows:

def main():

 start_time = time.time()

 # Thread Creation
 thread1 = MyThreadClass("Thread#1 ", randint(1,10))
 thread2 = MyThreadClass("Thread#2 ", randint(1,10))
 thread3 = MyThreadClass("Thread#3 ", randint(1,10))
 thread4 = MyThreadClass("Thread#4 ", randint(1,10))

Thread-Based Parallelism Chapter 2

[59]

 thread5 = MyThreadClass("Thread#5 ", randint(1,10))
 thread6 = MyThreadClass("Thread#6 ", randint(1,10))
 thread7 = MyThreadClass("Thread#7 ", randint(1,10))
 thread8 = MyThreadClass("Thread#8 ", randint(1,10))
 thread9 = MyThreadClass("Thread#9 ", randint(1,10))

 # Thread Running
 thread1.start()
 thread2.start()
 thread3.start()
 thread4.start()
 thread5.start()
 thread6.start()
 thread7.start()
 thread8.start()
 thread9.start()

 # Thread joining
 thread1.join()
 thread2.join()
 thread3.join()
 thread4.join()
 thread5.join()
 thread6.join()
 thread7.join()
 thread8.join()
 thread9.join()

 # End
 print("End")

 #Execution Time
 print("--- %s seconds ---" % (time.time() - start_time))

if __name__ == "__main__":
 main()

How it works...
In this example, we created nine threads, each with their own name and duration
property, according to the definition of the __init__ method.

We then run them using the start method, which is limited to executing the contents of
the previously defined run method. Note that the process ID for each thread is the same,
meaning that we are in a multithreaded process.

Thread-Based Parallelism Chapter 2

[60]

Also, note that the start method is not blocking: when it is executed, the control immediately
goes to the next line, while the thread is started in the background. In fact, as you can see,
the creation of threads does not take place in the order specified by the code. Likewise, thread
termination is constrained to the value of the duration parameter, evaluated using the
randint function, and passed by the parameter for each thread creation instance. To wait
for a thread to finish, a join operation must be performed.

The output looks like this:

---> Thread#1 running, belonging to process ID 13084
---> Thread#5 running, belonging to process ID 13084
---> Thread#2 running, belonging to process ID 13084
---> Thread#6 running, belonging to process ID 13084
---> Thread#7 running, belonging to process ID 13084
---> Thread#3 running, belonging to process ID 13084
---> Thread#4 running, belonging to process ID 13084
---> Thread#8 running, belonging to process ID 13084
---> Thread#9 running, belonging to process ID 13084

---> Thread#6 over
---> Thread#9 over
---> Thread#5 over
---> Thread#2 over
---> Thread#7 over
---> Thread#4 over
---> Thread#3 over
---> Thread#8 over
---> Thread#1 over

End

--- 9.117518663406372 seconds ---

There's more...
The feature that is most frequently associated with OOP is inheritance, which is the ability to
define a new class as a modified version of an already existing class. The main advantage of
inheritance is that you can add new methods to a class without having to change the
original definition.

Thread-Based Parallelism Chapter 2

[61]

The original class is often referred to as the parent class and the derived class, subclass.
Inheritance is a powerful feature, and some programs can be written much more easily and
concisely, providing the possibility to customize the behavior of a class without modifying
the original class. The very fact that the inheritance structure can reflect that of the problem
can, in some cases, make the program easier to understand.

However (to put the user on guard!), inheritance can make it more difficult to read the
program. This is because, when invoking a method, it is not always clear where this has
been defined within the code that must be traced within multiple modules, instead of being
in a single well-defined place.

Many of the things that can be done with inheritance can usually be managed elegantly
even without it, so it is appropriate to only use inheritance if the structure of the problem
requires it. If used at the wrong time, then the harm inheritance can cause can outweigh the
benefits of using it.

Thread synchronization with a lock
The threading module also includes a simple lock mechanism, which allows us to
implement synchronization between threads.

Getting ready
A lock is nothing more than an object that is typically accessible by multiple threads, which
a thread must possess before it can proceed to the execution of a protected section of a
program. These locks are created by executing the Lock() method, which is defined in the
threading module.

Once the lock has been created, we can use two methods that allow us to synchronize the
execution of two (or more) threads: the acquire() method to acquire the lock control, and
the release() method to release it.

The acquire() method accepts an optional parameter that, if not specified or set to True,
forces the thread to suspend its execution until the lock is released and can then be
acquired. If, on the other hand, the acquire() method is executed with an argument equal
to False, then it immediately returns a Boolean result, which is True if the lock has been
acquired, or False otherwise.

In the following example, we show the lock mechanism by modifying the code introduced
in the previous recipe, Defining a thread subclass.

Thread-Based Parallelism Chapter 2

[62]

How to do it...
The steps involved are as follows:

As shown in the following code block, the MyThreadClass class has been1.
modified, introducing the acquire() and release() methods within the run
method, while the Lock() definition is outside the definition of the class itself:

import threading
import time
import os
from threading import Thread
from random import randint

Lock Definition
threadLock = threading.Lock()

class MyThreadClass (Thread):
 def __init__(self, name, duration):
 Thread.__init__(self)
 self.name = name
 self.duration = duration
 def run(self):
 #Acquire the Lock
 threadLock.acquire()
 print ("---> " + self.name + \
 " running, belonging to process ID "\
 + str(os.getpid()) + "\n")
 time.sleep(self.duration)
 print ("---> " + self.name + " over\n")
 #Release the Lock
 threadLock.release()

The main() function has not changed with respect to the previous code sample:2.

def main():
 start_time = time.time()
 # Thread Creation
 thread1 = MyThreadClass("Thread#1 ", randint(1,10))
 thread2 = MyThreadClass("Thread#2 ", randint(1,10))
 thread3 = MyThreadClass("Thread#3 ", randint(1,10))
 thread4 = MyThreadClass("Thread#4 ", randint(1,10))
 thread5 = MyThreadClass("Thread#5 ", randint(1,10))
 thread6 = MyThreadClass("Thread#6 ", randint(1,10))
 thread7 = MyThreadClass("Thread#7 ", randint(1,10))
 thread8 = MyThreadClass("Thread#8 ", randint(1,10))
 thread9 = MyThreadClass("Thread#9 ", randint(1,10))

Thread-Based Parallelism Chapter 2

[63]

 # Thread Running
 thread1.start()
 thread2.start()
 thread3.start()
 thread4.start()
 thread5.start()
 thread6.start()
 thread7.start()
 thread8.start()
 thread9.start()

 # Thread joining
 thread1.join()
 thread2.join()
 thread3.join()
 thread4.join()
 thread5.join()
 thread6.join()
 thread7.join()
 thread8.join()
 thread9.join()

 # End
 print("End")
 #Execution Time
 print("--- %s seconds ---" % (time.time() - start_time))

if __name__ == "__main__":
 main()

How it works...
We have modified the code of the previous section by using a lock so that the threads will
be executed in sequence.

The first thread acquires the lock and performs its task while the other eight remain on hold.
At the end of the execution of the first thread, that is, when the release() method is
executed, the second one will get the lock and the threads from three to eight will still be
waiting until the end of the execution (that is, once again, only after running the
release() method).

Thread-Based Parallelism Chapter 2

[64]

The lock-acquire and lock-release execution are repeated until the ninth thread, with the final
result that as a result of the lock mechanism, this execution takes place in a sequential
mode, as can be seen in the following output:

---> Thread#1 running, belonging to process ID 10632
---> Thread#1 over
---> Thread#2 running, belonging to process ID 10632
---> Thread#2 over
---> Thread#3 running, belonging to process ID 10632
---> Thread#3 over
---> Thread#4 running, belonging to process ID 10632
---> Thread#4 over
---> Thread#5 running, belonging to process ID 10632
---> Thread#5 over
---> Thread#6 running, belonging to process ID 10632
---> Thread#6 over
---> Thread#7 running, belonging to process ID 10632
---> Thread#7 over
---> Thread#8 running, belonging to process ID 10632
---> Thread#8 over
---> Thread#9 running, belonging to process ID 10632
---> Thread#9 over

End

--- 47.3672661781311 seconds ---

There's more...
The insertion points of the acquire() and release() methods determine the entire
execution of the code. For this reason, it is very important that you take the time to analyze
what threads you want to use and how you want to synchronize them.

For example, we can change the insertion point of the release() method in the
MyThreadClass class like so:

import threading
import time
import os
from threading import Thread
from random import randint

Lock Definition
threadLock = threading.Lock()

Thread-Based Parallelism Chapter 2

[65]

class MyThreadClass (Thread):
 def __init__(self, name, duration):
 Thread.__init__(self)
 self.name = name
 self.duration = duration
 def run(self):
 #Acquire the Lock
 threadLock.acquire()
 print ("---> " + self.name + \
 " running, belonging to process ID "\
 + str(os.getpid()) + "\n")
 #Release the Lock in this new point
 threadLock.release()
 time.sleep(self.duration)
 print ("---> " + self.name + " over\n")

In this case, the output changes quite significantly:

---> Thread#1 running, belonging to process ID 11228
---> Thread#2 running, belonging to process ID 11228
---> Thread#3 running, belonging to process ID 11228
---> Thread#4 running, belonging to process ID 11228
---> Thread#5 running, belonging to process ID 11228
---> Thread#6 running, belonging to process ID 11228
---> Thread#7 running, belonging to process ID 11228
---> Thread#8 running, belonging to process ID 11228
---> Thread#9 running, belonging to process ID 11228

---> Thread#2 over
---> Thread#4 over
---> Thread#6 over
---> Thread#5 over
---> Thread#1 over
---> Thread#3 over
---> Thread#9 over
---> Thread#7 over
---> Thread#8 over

End
--- 6.11468243598938 seconds ---

As you can see, only the thread creation happens in sequential mode. Once thread creation
is complete, the new thread acquires the lock, while the previous one continues the
computation in the background.

Thread-Based Parallelism Chapter 2

[66]

Thread synchronization with RLock
A reentrant lock, or simply an RLock, is a synchronization primitive that can be acquired
multiple times by the same thread.

It uses the concept of the proprietary thread. This means that in the locked state, some
threads own the lock, while in the unlocked state, the lock is not owned by any thread.

The next example demonstrates how to manage threads through the RLock() mechanism.

Getting ready
An RLock is implemented through the threading.RLock() class. It provides the
acquire() and release() methods that have the same syntax as the threading.Lock()
class.

An RLock block can be acquired multiple times by the same thread. Other threads will not
be able to acquire the RLock block until the thread that owns it has made a release() call
for every previous acquire() call. Indeed, the RLock block must be released, but only by
the thread that acquired it.

How to do it...
The steps involved are as follows:

We introduced the Box class, which provides the add() and remove() methods1.
that access the execute() method in order to perform the action to add or delete
an item, respectively. Access to the execute() method is regulated by RLock():

import threading
import time
import random

class Box:
 def __init__(self):
 self.lock = threading.RLock()
 self.total_items = 0

 def execute(self, value):
 with self.lock:
 self.total_items += value

Thread-Based Parallelism Chapter 2

[67]

 def add(self):
 with self.lock:
 self.execute(1)

 def remove(self):
 with self.lock:
 self.execute(-1)

The following functions are called by the two threads. They have2.
the box class and the total number of items to add or to remove as parameters:

def adder(box, items):
 print("N° {} items to ADD \n".format(items))
 while items:
 box.add()
 time.sleep(1)
 items -= 1
 print("ADDED one item -->{} item to ADD \n".format(items))

def remover(box, items):
 print("N° {} items to REMOVE\n".format(items))
 while items:
 box.remove()
 time.sleep(1)
 items -= 1
 print("REMOVED one item -->{} item to REMOVE\
 \n".format(items))

Here, the total number of items to add or to remove from the box is set. As you3.
can see, these two numbers will be different. The execution ends when both the
adder and remover methods accomplish their tasks:

def main():
 items = 10
 box = Box()

 t1 = threading.Thread(target=adder, \
 args=(box, random.randint(10,20)))
 t2 = threading.Thread(target=remover, \
 args=(box, random.randint(1,10)))
 t1.start()
 t2.start()

 t1.join()
 t2.join()
if __name__ == "__main__":
 main()

Thread-Based Parallelism Chapter 2

[68]

How it works...
In the main program, the two threads of t1 and t2 have been associated with the adder()
and remover() functions. The functions are active if the number of items is greater than
zero.

The call to RLock() is carried out inside the __init__ method of the Box class:

class Box:
 def __init__(self):
 self.lock = threading.RLock()
 self.total_items = 0

The two adder() and remover() functions interact with the items of the Box class,
respectively, and call the Box class methods of add() and remove().

In each method call, a resource is captured and then released using the lock parameter that
is set in the _init_ method.

Here is the output:

N° 16 items to ADD
N° 1 items to REMOVE

ADDED one item -->15 item to ADD
REMOVED one item -->0 item to REMOVE

ADDED one item -->14 item to ADD
ADDED one item -->13 item to ADD
ADDED one item -->12 item to ADD
ADDED one item -->11 item to ADD
ADDED one item -->10 item to ADD
ADDED one item -->9 item to ADD
ADDED one item -->8 item to ADD
ADDED one item -->7 item to ADD
ADDED one item -->6 item to ADD
ADDED one item -->5 item to ADD
ADDED one item -->4 item to ADD
ADDED one item -->3 item to ADD
ADDED one item -->2 item to ADD
ADDED one item -->1 item to ADD
ADDED one item -->0 item to ADD
>>>

Thread-Based Parallelism Chapter 2

[69]

There's more...
The differences between lock and RLock are as follows:

A lock can only be acquired once before it must be released. However, RLock can
be acquired multiple times from the same thread; it must be released the same
number of times in order to be released.
Another difference is that an acquired lock can be released by any thread,
whereas an acquired RLock can only be released by the thread that acquired it.

Thread synchronization with semaphores
A semaphore is an abstract data type managed by the OS to synchronize access by multiple
threads to shared resources and data. It consists of an internal variable that identifies the
amount of concurrent access to a resource with which it is associated.

Getting ready
The operation of a semaphore is based on two functions: acquire() and release(), as
explained here:

Whenever a thread wants to access a given or a resource that is associated with a
semaphore, it must invoke the acquire() operation, which decreases the internal
variable of the semaphore and allows access to the resource if the value of this
variable appears to be non-negative. If the value is negative, then the thread will
be suspended and the release of the resource by another thread will be placed on
hold.
Having finished using shared resources, the thread frees resources through the
release() instruction. In this way, the internal variable of the semaphore is
increased, allowing, for a waiting thread (if any), the opportunity to access the
newly freed resource.

The semaphore is one of the oldest synchronization primitives in the history of computer
science, invented by the early Dutch computer scientist Edsger W. Dijkstra.

The following example shows how to synchronize threads through a semaphore.

Thread-Based Parallelism Chapter 2

[70]

How to do it...
The following code describes a problem where we have two threads, producer() and
consumer(), that share a common resource, which is the item. The task of producer() is
to generate the item while the consumer() thread's task is to use the item that has been
produced.

If the item has not yet produced the consumer() thread, then it has to wait. As soon as the
item is produced, the producer() thread notifies the consumer that the resource should be
used:

By initializing a semaphore to 0, we obtain a so-called semaphore event whose1.
sole purpose is to synchronize the computation of two or more threads. Here, a
thread must make use of data or common resources simultaneously:

semaphore = threading.Semaphore(0)

This operation is very similar to that described in the lock mechanism of the lock.2.
The producer() thread creates the item and, after that, it frees the resource by
calling the release() method:

semaphore.release()

Similarly, the consumer() thread acquires the data by the acquire() method. If3.
the semaphore's counter is equal to 0, then it blocks the condition's acquire()
method until it gets notified by a different thread. If the semaphore's counter is
greater than 0, then it decrements the value. When the producer creates an item,
it releases the semaphore, and then the consumer acquires it and consumes the
shared resource:

semaphore.acquire()

The synchronization process that is done via the semaphores is shown in the4.
following code block:

import logging
import threading
import time
import random

LOG_FORMAT = '%(asctime)s %(threadName)-17s %(levelname)-8s %\
 (message)s'
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)

semaphore = threading.Semaphore(0)

Thread-Based Parallelism Chapter 2

[71]

item = 0

def consumer():
 logging.info('Consumer is waiting')
 semaphore.acquire()
 logging.info('Consumer notify: item number {}'.format(item))

def producer():
 global item
 time.sleep(3)
 item = random.randint(0, 1000)
 logging.info('Producer notify: item number {}'.format(item))
 semaphore.release()

#Main program
def main():
 for i in range(10):
 t1 = threading.Thread(target=consumer)
 t2 = threading.Thread(target=producer)

 t1.start()
 t2.start()

 t1.join()
 t2.join()

if __name__ == "__main__":
 main()

How it works...
The data acquired is then printed on the standard output:

print ("Consumer notify : consumed item number %s " %item)

This is the result that we get after 10 runs:

2019-01-27 19:21:19,354 Thread-1 INFO Consumer is waiting
2019-01-27 19:21:22,360 Thread-2 INFO Producer notify: item number 388
2019-01-27 19:21:22,385 Thread-1 INFO Consumer notify: item number 388
2019-01-27 19:21:22,395 Thread-3 INFO Consumer is waiting
2019-01-27 19:21:25,398 Thread-4 INFO Producer notify: item number 939
2019-01-27 19:21:25,450 Thread-3 INFO Consumer notify: item number 939
2019-01-27 19:21:25,453 Thread-5 INFO Consumer is waiting
2019-01-27 19:21:28,459 Thread-6 INFO Producer notify: item number 388
2019-01-27 19:21:28,468 Thread-5 INFO Consumer notify: item number 388
2019-01-27 19:21:28,476 Thread-7 INFO Consumer is waiting

Thread-Based Parallelism Chapter 2

[72]

2019-01-27 19:21:31,478 Thread-8 INFO Producer notify: item number 700
2019-01-27 19:21:31,529 Thread-7 INFO Consumer notify: item number 700
2019-01-27 19:21:31,538 Thread-9 INFO Consumer is waiting
2019-01-27 19:21:34,539 Thread-10 INFO Producer notify: item number 685
2019-01-27 19:21:34,593 Thread-9 INFO Consumer notify: item number 685
2019-01-27 19:21:34,603 Thread-11 INFO Consumer is waiting
2019-01-27 19:21:37,604 Thread-12 INFO Producer notify: item number 503
2019-01-27 19:21:37,658 Thread-11 INFO Consumer notify: item number 503
2019-01-27 19:21:37,668 Thread-13 INFO Consumer is waiting
2019-01-27 19:21:40,670 Thread-14 INFO Producer notify: item number 690
2019-01-27 19:21:40,719 Thread-13 INFO Consumer notify: item number 690
2019-01-27 19:21:40,729 Thread-15 INFO Consumer is waiting
2019-01-27 19:21:43,731 Thread-16 INFO Producer notify: item number 873
2019-01-27 19:21:43,788 Thread-15 INFO Consumer notify: item number 873
2019-01-27 19:21:43,802 Thread-17 INFO Consumer is waiting
2019-01-27 19:21:46,807 Thread-18 INFO Producer notify: item number 691
2019-01-27 19:21:46,861 Thread-17 INFO Consumer notify: item number 691
2019-01-27 19:21:46,874 Thread-19 INFO Consumer is waiting
2019-01-27 19:21:49,876 Thread-20 INFO Producer notify: item number 138
2019-01-27 19:21:49,924 Thread-19 INFO Consumer notify: item number 138
>>>

There's more...
A particular use of semaphores is the mutex. A mutex is nothing but a semaphore with an
internal variable initialized to the value of 1, which allows the realization of mutual
exclusion in access to data and resources.

Semaphores are still commonly used in programming languages that are multithreaded;
however, they have two major problems, which we have discussed, as follows:

They do not prevent the possibility of a thread performing more wait operations
on the same semaphore. It is very easy to forget to do all the necessary signals in
relation to the number of waits performed.
You can run into situations of deadlock. For example, a deadlock situation is
created when the t1 thread executes a wait on the s1 semaphore, while the t2
thread executes a wait on the thread t1, executes a wait on s2 and t2, and then
executes a wait on s1.

Thread-Based Parallelism Chapter 2

[73]

Thread synchronization with a condition
A condition identifies a change of state in the application. It is a synchronization mechanism
where a thread waits for a specific condition and another thread notifies that this condition
has taken place.

Once the condition takes place, the thread acquires the lock in order to get exclusive access to
the shared resource.

Getting ready
A good way to illustrate this mechanism is by looking again at a producer/consumer
problem. The class producer writes to a buffer if it is not full, and the class consumer takes
the data from the buffer (eliminating them from the latter) if the buffer is full. The class
producer will notify the consumer that the buffer is not empty, while the consumer will
report to the producer that the buffer is not full.

How to do it...
The steps involved are as follows:

The class consumer acquires the shared resource that is modelled through1.
the items[] list:

condition.acquire()

If the length of the list is equal to 0, then the consumer is placed in a waiting2.
state:

if len(items) == 0:
 condition.wait()

Then it makes a pop operation from the items list:3.

items.pop()

So, the consumer's state is notified to the producer and the shared resource is4.
released:

condition.notify()

Thread-Based Parallelism Chapter 2

[74]

The class producer acquires the shared resource and then it verifies that the list is5.
completely full (in our example, we place the maximum number of items, 10,
that can be contained in the items list). If the list is full, then the producer is
placed in the wait state until the list is consumed:

condition.acquire()
if len(items) == 10:
 condition.wait()

If the list is not full, then a single item is added. The state is notified and the6.
resource is released:

condition.notify()
condition.release()

To show you the condition mechanism, we will use the consumer/producer7.
model again:

import logging
import threading
import time

LOG_FORMAT = '%(asctime)s %(threadName)-17s %(levelname)-8s %\
 (message)s'
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)

items = []
condition = threading.Condition()

class Consumer(threading.Thread):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 def consume(self):

 with condition:

 if len(items) == 0:
 logging.info('no items to consume')
 condition.wait()

 items.pop()
 logging.info('consumed 1 item')

 condition.notify()

Thread-Based Parallelism Chapter 2

[75]

 def run(self):
 for i in range(20):
 time.sleep(2)
 self.consume()

class Producer(threading.Thread):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 def produce(self):

 with condition:

 if len(items) == 10:
 logging.info('items produced {}.\
 Stopped'.format(len(items)))
 condition.wait()

 items.append(1)
 logging.info('total items {}'.format(len(items)))

 condition.notify()

 def run(self):
 for i in range(20):
 time.sleep(0.5)
 self.produce()

How it works...
producer generates the item and stores it in the buffer continuously. At the same time,
consumer uses the data produced, removing it from the buffer from time to time.

As soon as consumer has picked up an object from the buffer, it will wake up producer,
who will start to fill the buffer again.

Similarly, consumer will suspend if the buffer is empty. As soon as producer has
downloaded the data into the buffer, consumer will wake up.

Thread-Based Parallelism Chapter 2

[76]

As you can see, even in this case, the use of the condition directive allows the threads to
be properly synchronized.

The result that we get after a single run is as follows:

2019-08-05 14:33:44,285 Producer INFO total items 1
2019-08-05 14:33:44,786 Producer INFO total items 2
2019-08-05 14:33:45,286 Producer INFO total items 3
2019-08-05 14:33:45,786 Consumer INFO consumed 1 item
2019-08-05 14:33:45,787 Producer INFO total items 3
2019-08-05 14:33:46,287 Producer INFO total items 4
2019-08-05 14:33:46,788 Producer INFO total items 5
2019-08-05 14:33:47,289 Producer INFO total items 6
2019-08-05 14:33:47,787 Consumer INFO consumed 1 item
2019-08-05 14:33:47,790 Producer INFO total items 6
2019-08-05 14:33:48,291 Producer INFO total items 7
2019-08-05 14:33:48,792 Producer INFO total items 8
2019-08-05 14:33:49,293 Producer INFO total items 9
2019-08-05 14:33:49,788 Consumer INFO consumed 1 item
2019-08-05 14:33:49,794 Producer INFO total items 9
2019-08-05 14:33:50,294 Producer INFO total items 10
2019-08-05 14:33:50,795 Producer INFO items produced 10. Stopped
2019-08-05 14:33:51,789 Consumer INFO consumed 1 item
2019-08-05 14:33:51,790 Producer INFO total items 10
2019-08-05 14:33:52,290 Producer INFO items produced 10. Stopped
2019-08-05 14:33:53,790 Consumer INFO consumed 1 item
2019-08-05 14:33:53,790 Producer INFO total items 10
2019-08-05 14:33:54,291 Producer INFO items produced 10. Stopped
2019-08-05 14:33:55,790 Consumer INFO consumed 1 item
2019-08-05 14:33:55,791 Producer INFO total items 10
2019-08-05 14:33:56,291 Producer INFO items produced 10. Stopped
2019-08-05 14:33:57,791 Consumer INFO consumed 1 item
2019-08-05 14:33:57,791 Producer INFO total items 10
2019-08-05 14:33:58,292 Producer INFO items produced 10. Stopped
2019-08-05 14:33:59,791 Consumer INFO consumed 1 item
2019-08-05 14:33:59,791 Producer INFO total items 10
2019-08-05 14:34:00,292 Producer INFO items produced 10. Stopped
2019-08-05 14:34:01,791 Consumer INFO consumed 1 item
2019-08-05 14:34:01,791 Producer INFO total items 10
2019-08-05 14:34:02,291 Producer INFO items produced 10. Stopped
2019-08-05 14:34:03,791 Consumer INFO consumed 1 item
2019-08-05 14:34:03,792 Producer INFO total items 10
2019-08-05 14:34:05,792 Consumer INFO consumed 1 item
2019-08-05 14:34:07,793 Consumer INFO consumed 1 item
2019-08-05 14:34:09,794 Consumer INFO consumed 1 item
2019-08-05 14:34:11,795 Consumer INFO consumed 1 item
2019-08-05 14:34:13,795 Consumer INFO consumed 1 item
2019-08-05 14:34:15,833 Consumer INFO consumed 1 item

Thread-Based Parallelism Chapter 2

[77]

2019-08-05 14:34:17,833 Consumer INFO consumed 1 item
2019-08-05 14:34:19,833 Consumer INFO consumed 1 item
2019-08-05 14:34:21,834 Consumer INFO consumed 1 item
2019-08-05 14:34:23,835 Consumer INFO consumed 1 item

There's more...
It's interesting to see the Python internals for the condition synchronization mechanism.
The internal class _Condition creates an RLock() object if no existing lock has been
passed to the class's constructor. Also, the lock will be managed when acquire() and
released() are called:

class _Condition(_Verbose):
 def __init__(self, lock=None, verbose=None):
 _Verbose.__init__(self, verbose)
 if lock is None:
 lock = RLock()
 self.__lock = lock

Thread synchronization with an event
An event is an object that is used for communication between threads. A thread waits for a
signal while another thread outputs it. Basically, an event object manages an internal flag
that can be set to false with clear(), set to true with set(), and tested with is_set().

A thread can hold a signal by means of the wait() method, which sends the call with the
set() method.

Getting ready
To understand thread synchronization through the event object, let's take a look at the
producer/consumer problem.

Thread-Based Parallelism Chapter 2

[78]

How to do it...
Again, to explain how to synchronize threads through events, we will refer to the
producer/consumer problem. The problem describes two processes, a producer and a
consumer, who share a common buffer of a fixed size. The producer's task is to generate
items and deposit them in the continuous buffer. At the same time, the consumer will use
the items produced, removing them from the buffer from time to time.

The problem is to ensure that the producer does not process new data if the buffer is full
and that the consumer does not look for data if the buffer is empty.

Now, let's see how to implement the consumer/producer problem by using thread
synchronization with an event statement:

Here, the relevant libraries are imported as follows:1.

import logging
import threading
import time
import random

Then, we define the log output format. It is useful to clearly visualize what's2.
happening:

LOG_FORMAT = '%(asctime)s %(threadName)-17s %(levelname)-8s %\
 (message)s'
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)

Set the items list. This parameter will be used by the Consumer and Producer3.
classes:

items = []

The event parameter is defined as follows. This parameter will be used to4.
synchronize the communication between threads:

event = threading.Event()

The Consumer class is initialized with the list of items and the Event() function.5.
In the run method, the consumer waits for a new item to consume. When the
item arrives, it is popped from the item list:

class Consumer(threading.Thread):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

Thread-Based Parallelism Chapter 2

[79]

 def run(self):
 while True:
 time.sleep(2)
 event.wait()
 item = items.pop()
 logging.info('Consumer notify: {} popped by {}'\
 .format(item, self.name))

The Producer class is initialized with the list of items and the Event() function.6.
Unlike the example with condition objects, the item list is not global, but it is
passed as a parameter:

class Producer(threading.Thread):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

In the run method for each item that is created, the Producer class appends it to7.
the list of items and then notifies the event:

 def run(self):
 for i in range(5):
 time.sleep(2)
 item = random.randint(0, 100)
 items.append(item)
 logging.info('Producer notify: item {} appended by\
 {}'\.format(item, self.name))

There are two steps that you need to take for this and the first step, which are as8.
follows:

 event.set()
 event.clear()

The t1 thread appends a value to the list and then sets the event to notify the9.
consumer. The consumer's call to wait() stops blocking and the integer is
retrieved from the list:

if __name__ == "__main__":
 t1 = Producer()
 t2 = Consumer()

 t1.start()
 t2.start()

 t1.join()
 t2.join()

Thread-Based Parallelism Chapter 2

[80]

How it works...
All the operations between the Producer and the Consumer classes can be easily resumed
with the help of the following schema:

Thread synchronization with event objects

In particular, the Producer and the Consumer classes have the following behavior:

Producer acquires a lock, adds an item to the queue, and notifies this event
to Consumer (set event). It then sleeps until it receives a new item to add.
Consumer acquires a block and then begins to listen to the elements in a
continuous cycle. The moment the event arrives, the consumer abandons the
block, thus allowing other producers/consumers to enter and acquire the block. If
Consumer is reactivated, then it reacquires the lock by safely processing new
items from the queue:

2019-02-02 18:23:35,125 Thread-1 INFO Producer notify: item 68
appended by Thread-1
2019-02-02 18:23:35,133 Thread-2 INFO Consumer notify: 68 popped by
Thread-2
2019-02-02 18:23:37,138 Thread-1 INFO Producer notify: item 45
appended by Thread-1
2019-02-02 18:23:37,143 Thread-2 INFO Consumer notify: 45 popped by
Thread-2
2019-02-02 18:23:39,148 Thread-1 INFO Producer notify: item 78
appended by Thread-1

Thread-Based Parallelism Chapter 2

[81]

2019-02-02 18:23:39,153 Thread-2 INFO Consumer notify: 78 popped by
Thread-2
2019-02-02 18:23:41,158 Thread-1 INFO Producer notify: item 22
appended by Thread-1
2019-02-02 18:23:43,173 Thread-1 INFO Producer notify: item 48
appended by Thread-1
2019-02-02 18:23:43,178 Thread-2 INFO Consumer notify: 48 popped by
Thread-2

Thread synchronization with a barrier
Sometimes, an application can be divided into phases with the rule that no process can
continue if first, all threads of the process have completed their own task. A barrier
implements this concept: a thread that has finished its phase calls a primitive barrier and
stops. When all the threads involved have finished their stage of execution and have also
invoked the primitive barrier, the system unlocks them all, allowing threads to move to a
later stage.

Getting ready
Python's threading module implements barriers through the Barrier class. In the next
section, let's learn about how to use this synchronization mechanism in a very simple
example.

How to do it...
In this example, we simulate a run with three participants, Huey, Dewey, and Louie, in
which a barrier is assimilated to that of a finish line.

Moreover, the race can end on its own when all three participants cross the finish line.

The barrier is implemented through the Barrier class, in which the number of threads to
be completed must be specified as an argument to move to the next stage:

from random import randrange
from threading import Barrier, Thread
from time import ctime, sleep

num_runners = 3
finish_line = Barrier(num_runners)
runners = ['Huey', 'Dewey', 'Louie']

Thread-Based Parallelism Chapter 2

[82]

def runner():
 name = runners.pop()
 sleep(randrange(2, 5))
 print('%s reached the barrier at: %s \n' % (name, ctime()))
 finish_line.wait()

def main():
 threads = []
 print('START RACE!!!!')
 for i in range(num_runners):
 threads.append(Thread(target=runner))
 threads[-1].start()
 for thread in threads:
 thread.join()
 print('Race over!')

if __name__ == "__main__":
 main()

How it works...
First, we set the number of runners to num_runners = 3 in order to set the final goal on
the next line through the Barrier directive. The runners are set in the runners' list; each of
them will have an arrival time that is determined in the runner function, using the
randrange directive.

When a runner arrives at the finish line, call the wait method, which will block all the
runners (the threads) that have made that call. The output for this is as follows:

START RACE!!!!
Dewey reached the barrier at: Sat Feb 2 21:44:48 2019

Huey reached the barrier at: Sat Feb 2 21:44:49 2019

Louie reached the barrier at: Sat Feb 2 21:44:50 2019

Race over!

In this case, Dewey won the race.

Thread-Based Parallelism Chapter 2

[83]

Thread communication using a queue
Multithreading can be complicated when threads need to share data or resources. Luckily,
the threading module provides many synchronization primitives, including semaphores,
condition variables, events, and locks.

However, it is considered a best practice to use the queue module. In fact, a queue is much
easier to deal with and makes threaded programming considerably safer, as it effectively
funnels all access to a resource of a single thread and allows for a cleaner and more
readable design pattern.

Getting ready
We will simply consider these queue methods:

put(): Puts an item in the queue
get(): Removes and returns an item from the queue
task_done(): Needs to be called each time an item has been processed
join(): Blocks until all items have been processed

How to do it...
In this example, we will see how to use the threading module with the queue module.
Also, we have two entities here that try to share a common resource, a queue. The code is as
follows:

from threading import Thread
from queue import Queue
import time
import random

class Producer(Thread):
 def __init__(self, queue):
 Thread.__init__(self)
 self.queue = queue
 def run(self):
 for i in range(5):
 item = random.randint(0, 256)
 self.queue.put(item)
 print('Producer notify : item N°%d appended to queue by\
 %s\n'\

Thread-Based Parallelism Chapter 2

[84]

 % (item, self.name))
 time.sleep(1)

class Consumer(Thread):
 def __init__(self, queue):
 Thread.__init__(self)
 self.queue = queue

 def run(self):
 while True:
 item = self.queue.get()
 print('Consumer notify : %d popped from queue by %s'\
 % (item, self.name))
 self.queue.task_done()

if __name__ == '__main__':
 queue = Queue()
 t1 = Producer(queue)
 t2 = Consumer(queue)
 t3 = Consumer(queue)
 t4 = Consumer(queue)

 t1.start()
 t2.start()
 t3.start()
 t4.start()

 t1.join()
 t2.join()
 t3.join()
 t4.join()

How it works...
First, with the producer class, we don't need to pass the integers list because we use the
queue to store the integers that are generated.

The thread in the producer class generates integers and puts them in the queue in a
for loop. The producer class uses Queue.put(item[, block[, timeout]]) to insert
data in the queue. It has the logic to acquire the lock before inserting data in a queue.

Thread-Based Parallelism Chapter 2

[85]

There are two possibilities:

If the optional arguments block is true and timeout is None (this is the default
case that we used in the example), then it is necessary for us to block until a free
slot is available. If the timeout is a positive number, then it blocks at most
timeout seconds and raises the full exception if no free slot is available within
that time.
If the block is false, then put an item in the queue if a free slot is immediately
available, otherwise, raise the full exception (timeout is ignored in this case).
Here, put checks whether the queue is full and then calls wait internally, after
which, the producer starts waiting.

Next is the consumer class. The thread gets the integer from the queue and indicates that it
is done working on it by using task_done. The consumer class uses
Queue.get([block[, timeout]]) and acquires the lock before removing data from the
queue. The consumer is placed in a waiting state, in case the queue is empty. Finally, in the
main function, we create four threads, one for the producer class and three for the
consumer class, respectively.

The output should be like this:

Producer notify : item N°186 appended to queue by Thread-1
Consumer notify : 186 popped from queue by Thread-2

Producer notify : item N°16 appended to queue by Thread-1
Consumer notify : 16 popped from queue by Thread-3

Producer notify : item N°72 appended to queue by Thread-1
Consumer notify : 72 popped from queue by Thread-4

Producer notify : item N°178 appended to queue by Thread-1
Consumer notify : 178 popped from queue by Thread-2

Producer notify : item N°214 appended to queue by Thread-1
Consumer notify : 214 popped from queue by Thread-3

Thread-Based Parallelism Chapter 2

[86]

There's more...
All the operations between the producer class and the consumer class can easily be
resumed with the following schema:

Thread synchronization with the queue module

The Producer thread acquires the lock and then inserts data in the QUEUE data
structure.
The Consumer threads get the integers from the QUEUE. These threads acquire
the lock before removing data from the QUEUE.

If the QUEUE is empty, then the consumer threads get in a waiting state.

With this recipe, the chapter dedicated to thread-based parallelism comes to an end.

3
Process-Based Parallelism

In the previous chapter, we learned how to use threads to implement concurrent
applications. This chapter will examine the process-based approach that we introduced in
Chapter 1, Getting Started with Parallel Computing and Python. In particular, the focus of the
chapter is on the Python multiprocessing module.

The Python multiprocessing module, which is a part of the standard library of the
language, implements the shared memory programming paradigm, that is, the
programming of a system that consists of one or more processors that have access to a shared
memory.

In this chapter, we will cover the following recipes:

Understanding Python's multiprocessing module
Spawning a process
Naming a process
Running processes in the background
Killing a process
Defining a process in a subclass
Using a queue to exchange objects
Using pipes to exchange objects
Synchronizing processes
Managing a state between processes
Using a process pool

Process-Based Parallelism Chapter 3

[88]

Understanding Python's multiprocessing
module
The introduction of the Python multiprocessing documentation (https:/ /docs. python.
org/2.7/library/ multiprocessing. html#introduction) clearly mentions that all the
functionality within this package requires the main module to be importable to the children
(https://docs.python. org/ 3. 3/ library/ multiprocessing. html).

The __main__ module is not importable to the children in IDLE, even if you run the script
as a file with IDLE. To get the correct result, we will run all the examples from Command
Prompt:

> python multiprocessing_example.py

Here, multiprocessing_example.py is the script's name.

Spawning a process
Spawning a process is the creation of a child process from a parent process. The latter
continues its execution asynchronously or waits until the child process ends.

Getting ready
The multiprocessing library allows spawning processes by following these steps:

Define the process object.1.
Call the start() method of the process to run it.2.
Call the join() method of the process. It waits until the process has completed3.
the job and then exits.

https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/2.7/library/multiprocessing.html#introduction
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html
https://docs.python.org/3.3/library/multiprocessing.html

Process-Based Parallelism Chapter 3

[89]

How to do it...
Let's have a look at the following steps:

To create a process, we need to import the multiprocessing module with the1.
following command:

import multiprocessing

Each process is associated with the myFunc(i) function. This function outputs2.
the numbers from 0 to i, where i is the ID associated with the process number:

def myFunc(i):
 print ('calling myFunc from process n°: %s' %i)
 for j in range (0,i):
 print('output from myFunc is :%s' %j)

Then, we define the process object with myFunc as the target function:3.

if __name__ == '__main__':
 for i in range(6):
 process = multiprocessing.Process(target=myFunc, args=(i,))

Finally, we call the start and join methods on the process created:4.

 process.start()
 process.join()

 Without the join method, child processes do not end and must be killed manually.

How it works...
In this section, we have therefore seen how it is possible to create processes by starting from
a parent process. This feature is called spawning a process.

Python's multiprocessing library allows easy process management by following three
simple steps. The first step is the process definition through the multiprocessing class
method, Process:

process = multiprocessing.Process(target=myFunc, args=(i,))

The Process method has as an argument of the function to spawn, myFunc, and any
arguments of the function itself.

Process-Based Parallelism Chapter 3

[90]

The following two steps are necessary to execute and exit the process:

 process.start()
 process.join()

To run the process and display the results, let's open Command Prompt, preferably in the
same folder containing the example file (spawning_processes.py), and then type the
following command:

> python spawning_processes.py

For each process created (there are six in all), the output of the target function is
shown. Remember that this is a simple counter from 0 up to the index of the process ID:

calling myFunc from process n°: 0
calling myFunc from process n°: 1
output from myFunc is :0
calling myFunc from process n°: 2
output from myFunc is :0
output from myFunc is :1
calling myFunc from process n°: 3
output from myFunc is :0
output from myFunc is :1
output from myFunc is :2
calling myFunc from process n°: 4
output from myFunc is :0
output from myFunc is :1
output from myFunc is :2
output from myFunc is :3
calling myFunc from process n°: 5
output from myFunc is :0
output from myFunc is :1
output from myFunc is :2
output from myFunc is :3
output from myFunc is :4

There's more...
This reminds us once again of the importance of instantiating the Process object within the
main section: this is because the child process created imports the script file where the
target function is contained. Then, by instantiating the process object within this block,
we prevent an infinite recursive call of such instantiations.

Process-Based Parallelism Chapter 3

[91]

A valid workaround is used to define the target function in a different script, namely
myFunc.py:

def myFunc(i):
 print ('calling myFunc from process n°: %s' %i)
 for j in range (0,i):
 print('output from myFunc is :%s' %j)
 return

The main program containing the process instance is defined in a second file
(spawning_processes_namespace.py):

import multiprocessing
from myFunc import myFunc

if __name__ == '__main__':
 for i in range(6):
 process = multiprocessing.Process(target=myFunc, args=(i,))
 process.start()
 process.join()

To run this example, type the following command:

> python spawning_processes_names.py

The output is the same as the previous example.

See also
The official guide for the multiprocessing library can be found at https:/ /docs. python.
org/3/.

Naming a process
In the previous example, we identified the processes and how to pass a variable to the
target function. However, it is very useful to associate a name to the processes as
debugging an application requires the processes to be well marked and identifiable.

https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/

Process-Based Parallelism Chapter 3

[92]

Getting ready
At some point in your code, it may be crucial to know what process is currently being
executed. For this purpose, the multiprocessing library provides the
current_process() method, which uses the name attribute to identify which process
is currently running. In the following section, we'll learn about this topic.

How to do it...
Let's perform the following steps:

The target function for both the processes is the myFunc function. It outputs the1.
process name by evaluating the multiprocessing.current_process().name
method:

import multiprocessing
import time

def myFunc():
 name = multiprocessing.current_process().name
 print ("Starting process name = %s \n" %name)
 time.sleep(3)
 print ("Exiting process name = %s \n" %name)

Then, we create process_with_name simply by instantiating the name2.
parameter and process_with_default_name:

if __name__ == '__main__':
 process_with_name = multiprocessing.Process\
 (name='myFunc process',\
 target=myFunc)

 process_with_default_name = multiprocessing.Process\
 (target=myFunc)

Finally, the processes are started and then joined:3.

 process_with_name.start()
 process_with_default_name.start()
 process_with_name.join()
 process_with_default_name.join()

Process-Based Parallelism Chapter 3

[93]

How it works...
In the main program, the processes are created using the same target function, myFunc.
This function simply prints the process name.

To run the example, open Command Prompt and type the following command:

> python naming_processes.py

The output looks like this:

Starting process name = myFunc process
Starting process name = Process-2

Exiting process name = Process-2
Exiting process name = myFunc process

There's more...
The main Python process is multiprocessing.process._MainProcess, while child
processes are multiprocessing.process.Process. It can be tested by simply typing the
following:

>>> import multiprocessing
>>> multiprocessing.current_process().name
'MainProcess'

See also
More on this topic can be found at https:/ /doughellmann. com/ blog/ 2012/ 04/30/
determining-the- name- of- a- process- from- python/ .

Running processes in the background
Running in the background is a mode of execution that is typical of some programs that do
not require the presence or intervention of the user, and which may be concurrent to the
execution of other programs (and therefore, it is only possible in multitasking systems),
resulting in the user being unaware about it. Background programs typically
perform long or time-consuming tasks such as peer-to-peer filesharing programs or
defragmentation of filesystems. Many OS processes also run in the background.

https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/
https://doughellmann.com/blog/2012/04/30/determining-the-name-of-a-process-from-python/

Process-Based Parallelism Chapter 3

[94]

In Windows, programs in this mode (scanning antiviruses or OS updates) often place an
icon in the system tray (the area of the desktop next to the system clock) in order to signal
their activity and adopt behaviors that reduce the use of resources so as to not interfere
with the user's interactive activities, such as slowing down or causing interruptions. In
Unix and Unix-like systems, processes that run in the background are called daemons.
Using a task manager can highlight all running programs including those in the
background.

Getting ready
The multiprocessing module allows—through the daemonic option—to run background
processes. In the following example, two processes are defined:

background_process with their daemon parameter set to True
NO_background_process with their daemon parameter set to False

How to do it...
In the following example, we implement a target function, namely foo, which displays the
digits from 0 to 4 if the child process is in the background; otherwise, it prints the digits
from 5 to 9:

Let's import the relevant libraries:1.

import multiprocessing
import time

Then, we define the foo() function. As previously specified, the printed digits2.
depend on the value of the name parameter:

def foo():
 name = multiprocessing.current_process().name
 print ("Starting %s \n" %name)
 if name == 'background_process':
 for i in range(0,5):
 print('---> %d \n' %i)
 time.sleep(1)
 else:
 for i in range(5,10):
 print('---> %d \n' %i)
 time.sleep(1)
 print ("Exiting %s \n" %name)

Process-Based Parallelism Chapter 3

[95]

Finally, we define the following processes: background_process and3.
NO_background_process. Notice that the daemon parameter is set for the two
processes:

if __name__ == '__main__':
 background_process = multiprocessing.Process\
 (name='background_process',\
 target=foo)
 background_process.daemon = True

 NO_background_process = multiprocessing.Process\
 (name='NO_background_process',\
 target=foo)
 NO_background_process.daemon = False
 background_process.start()
 NO_background_process.start()

How it works...
Note that only the daemon parameter of the process defines whether the process should run
in the background or not. To run this example, type the following command:

> python run_background_processes.py

The output clearly reports only the NO_background_process output:

Starting NO_background_process
---> 5

---> 6

---> 7

---> 8

---> 9
Exiting NO_background_process

The output changes the setting of the daemon parameter for background_process to
False:

background_process.daemon = False

Process-Based Parallelism Chapter 3

[96]

To run this example, type the following:

C:\>python run_background_processes_no_daemons.py

The output reports the execution of both the background_process and
NO_background_process processes:

Starting NO_background_process
Starting background_process
---> 5

---> 0
---> 6

---> 1
---> 7

---> 2
---> 8

---> 3
---> 9

---> 4

Exiting NO_background_process
Exiting background_process

See also
A code snippet on how to run a Python script in the background in Linux can be found
at https://janakiev. com/ til/ python- background/ .

Killing a process
There is no perfect software and even in the best applications, you can nest a bug that leads
to blocking the application, which is why modern OSes have developed several methods to
terminate the processes of applications in order to free the system resources and allow the
user to use them for other operations as soon as possible. This section will show you how to
kill a process in your multiprocessing application.

https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/
https://janakiev.com/til/python-background/

Process-Based Parallelism Chapter 3

[97]

Getting ready
It's possible to kill a process immediately by using the terminate method. Also, we use the
is_alive method to keep track of whether the process is alive or not.

How to do it...
The following steps allow us to perform the recipe:

Let's import the relevant libraries:1.

import multiprocessing
import time

Then, a simple target function is implemented. In this example, the target2.
function, foo(), prints the first 10 digits:

def foo():
 print ('Starting function')
 for i in range(0,10):
 print('-->%d\n' %i)
 time.sleep(1)
 print ('Finished function')

In the main program, we create a process monitoring its lifetime by the3.
is_alive method; then, we finish it with a call to terminate:

if __name__ == '__main__':
 p = multiprocessing.Process(target=foo)
 print ('Process before execution:', p, p.is_alive())
 p.start()
 print ('Process running:', p, p.is_alive())
 p.terminate()
 print ('Process terminated:', p, p.is_alive())
 p.join()
 print ('Process joined:', p, p.is_alive())

Process-Based Parallelism Chapter 3

[98]

Then, we verify the status code when the process is finished and read the4.
attribute of the ExitCode process:

 print ('Process exit code:', p.exitcode)

The possible values of ExitCode are as follows:5.

== 0: No error was produced.
> 0: The process had an error and exited that code.
< 0: The process was killed with a signal of -1 * ExitCode.

How it works...
The sample code consists of a target function, foo(), whose task is to print out the first 10
integer numbers on the screen. In the main program, the process is executed and then killed
by the terminate instruction. The process is then joined and ExitCode is determined.

To run the code, type the following command:

> python killing_processes.py

Then, we get the following output:

Process before execution: <Process(Process-1, initial)> False
Process running: <Process(Process-1, started)> True
Process terminated: <Process(Process-1, started)> True
Process joined: <Process(Process-1, stopped[SIGTERM])> False
Process exit code: -15

Notice that the output value of the ExitCode code is equal to -15. The negative value
of -15 indicates that the child was terminated by an interrupt signal, which is identified by
the number 15.

See also
On a Linux machine, a Python process can be identified and then killed simply by
following the tutorial at http:/ / www. cagrimmett. com/ til/ 2016/ 05/06/ killing- rogue-
python-processes. html.

http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html
http://www.cagrimmett.com/til/2016/05/06/killing-rogue-python-processes.html

Process-Based Parallelism Chapter 3

[99]

Defining processes in a subclass
The multiprocessing module provides access to process management functionalities. In
this section, we'll learn about how to define a process in a subclass of the
multiprocessing.Process class.

Getting ready
To implement a multiprocessing custom subclass, we need to do the following things:

Define a subclass of the multiprocessing.Process class, redefining the run()
method.
Override the _init__(self [,args]) method to add additional arguments, if
needed.
Override the run(self [,args]) method to implement what Process should
do when it is started.

Once you have created the new Process subclass, you can create an instance of it and then
start by invoking the start method, which will, in turn, call the run method.

How to do it...
Just consider a very simple example, as follows:

Import the relevant library first:1.

import multiprocessing

Then, define a subclass, MyProcess, overriding only the run method, which2.
returns the process' name:

class MyProcess(multiprocessing.Process):

 def run(self):
 print ('called run method by %s' %self.name)
 return

Process-Based Parallelism Chapter 3

[100]

In the main program, we define a subclass of 10 processes:3.

if __name__ == '__main__':
 for i in range(10):
 process = MyProcess()
 process.start()
 process.join()

How it works...
Each process subclass is represented by a class that extends the Process class and
overrides the run() method. This method is the starting point of Process:

class MyProcess (multiprocessing.Process):
 def run(self):
 print ('called run method in process: %s' %self.name)
 return

In the main program, we create several objects of the MyProcess() type. The execution of
the thread begins when the start() method is called:

p = MyProcess()
p.start()

The join() command just handles the termination of processes. To run the script from
Command Prompt, type the following command:

> python process_in_subclass.py

The output looks like this:

called run method by MyProcess-1
called run method by MyProcess-2
called run method by MyProcess-3
called run method by MyProcess-4
called run method by MyProcess-5
called run method by MyProcess-6
called run method by MyProcess-7
called run method by MyProcess-8
called run method by MyProcess-9
called run method by MyProcess-10

Process-Based Parallelism Chapter 3

[101]

There's more...
In object-oriented programming, a subclass is a class that inherits all properties from a
superclass, whether they are objects or methods. An alternative name to subclass is derived
class. Inheritance is the specific term that indicates this process by which the daughter or
derived classes inherit the properties of parent classes or superclasses.

You can think of a subclass as a particular genre of its superclass; in fact, it can use methods
and/or attributes, as well as redefine them through overriding.

See also
More information on class definition techniques can be found at http:/ /buildingskills.
itmaybeahack.com/ book/ python- 2. 6/ html/ p03/ p03c02_ adv_ class. html.

Using a queue to exchange data
A queue is a data structure of the First-In, First-Out (FIFO) type (the first input is the first to
exit). A practical example is the queues to get a service, how to pay at the supermarket, or
get your hair cut at the hairdresser. Ideally, you are served in the same order as you were
presented to. This is exactly how a FIFO queue works.

Getting ready
In this section, we show you how to use a queue for a producer-consumer problem, that is a
classic example of process synchronization.

The producer-consumer problem describes two processes: one is the producer and the other
is a consumer, sharing a common buffer of a fixed size.

The task of the producer is to generate data and to deposit it in the buffer continuously. At
the same time, the consumer will use the data produced, removing it from the buffer from
time to time. The problem is to ensure that the producer does not process new data if the
buffer is full and that the consumer does not look for data if the buffer is empty. The
solution for the producer is to suspend its execution if the buffer is full.

http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html
http://buildingskills.itmaybeahack.com/book/python-2.6/html/p03/p03c02_adv_class.html

Process-Based Parallelism Chapter 3

[102]

As soon as the consumer has taken an item from the buffer, the producer wakes up and
starts to fill the buffer again. Similarly, the consumer will suspend if the buffer is empty. As
soon as the producer has downloaded the data into the buffer, the consumer wakes up.

How to do it...
This solution can be implemented by means of communication strategies between
processes, shared memory, or message passing. An incorrect solution could result in a
deadlock, in which both processes wait to be awakened:

import multiprocessing
import random
import time

Let's perform the steps as follows:

The producer class is responsible for entering 10 items in the queue by using the1.
put method:

class producer(multiprocessing.Process):
 def __init__(self, queue):
 multiprocessing.Process.__init__(self)
 self.queue = queue

 def run(self) :
 for i in range(10):
 item = random.randint(0, 256)
 self.queue.put(item)
 print ("Process Producer : item %d appended \
 to queue %s"\
 % (item,self.name))
 time.sleep(1)
 print ("The size of queue is %s"\
 % self.queue.qsize())

The consumer class has the task of removing the items from the queue (using the2.
get method) and verifying that the queue is not empty. If this happens, then the
flow inside the while loop ends with a break statement:

class consumer(multiprocessing.Process):
 def __init__(self, queue):
 multiprocessing.Process.__init__(self)
 self.queue = queue

 def run(self):

Process-Based Parallelism Chapter 3

[103]

 while True:
 if (self.queue.empty()):
 print("the queue is empty")
 break
 else :
 time.sleep(2)
 item = self.queue.get()
 print ('Process Consumer : item %d popped \
 from by %s \n'\
 % (item, self.name))
 time.sleep(1)

The multiprocessing class has its queue object instantiated in the3.
main program:

if __name__ == '__main__':
 queue = multiprocessing.Queue()
 process_producer = producer(queue)
 process_consumer = consumer(queue)
 process_producer.start()
 process_consumer.start()
 process_producer.join()
 process_consumer.join()

How it works...
Within the main program, we define the queue using the multiprocessing.Queue object.
Then, it is passed as an argument to the producer and consumer processes:

 queue = multiprocessing.Queue()
 process_producer = producer(queue)
 process_consumer = consumer(queue)

In the producer class, the queue.put method is used to append new items to the queue:

self.queue.put(item)

While in the consumer class, the queue.get method is used to pop out the items:

self.queue.get()

Execute the code by typing the following command:

> python communicating_with_queue.py

Process-Based Parallelism Chapter 3

[104]

The following output reports the interaction between the producer and the consumer:

Process Producer : item 79 appended to queue producer-1
The size of queue is 1
Process Producer : item 50 appended to queue producer-1
The size of queue is 2
Process Consumer : item 79 popped from by consumer-2
Process Producer : item 33 appended to queue producer-1
The size of queue is 2
Process Producer : item 57 appended to queue producer-1
The size of queue is 3
Process Producer : item 227 appended to queue producer-1
Process Consumer : item 50 popped from by consumer-2
The size of queue is 3
Process Producer : item 98 appended to queue producer-1
The size of queue is 4
Process Producer : item 64 appended to queue producer-1
The size of queue is 5
Process Producer : item 182 appended to queue producer-1
Process Consumer : item 33 popped from by consumer-2
The size of queue is 5
Process Producer : item 206 appended to queue producer-1
The size of queue is 6
Process Producer : item 214 appended to queue producer-1
The size of queue is 7
Process Consumer : item 57 popped from by consumer-2
Process Consumer : item 227 popped from by consumer-2
Process Consumer : item 98 popped from by consumer-2
Process Consumer : item 64 popped from by consumer-2
Process Consumer : item 182 popped from by consumer-2
Process Consumer : item 206 popped from by consumer-2
Process Consumer : item 214 popped from by consumer-2
the queue is empty

There's more...
A queue has the JoinableQueue subclass. This provides the following methods:

task_done(): This method indicates that a task is complete, for example, after
using the get() method to fetch items from the queue. So task_done() must be
used only by queue consumers.
join(): This method blocks the processes until all the items in the queue have
been completed and processed.

Process-Based Parallelism Chapter 3

[105]

See also
A good tutorial on how to use a queue is available at https:/ /www. pythoncentral. io/use-
queue-beginners-guide/ .

Using pipes to exchange objects
A pipe does the following:

It returns a pair of connection objects connected by a pipe.
Every connection object has to send/receive methods to communicate between
processes.

Getting ready
The multiprocessing library allows you to implement a pipe data structure using
the multiprocessing.Pipe (duplex) function. This returns a pair of objects, (conn1,
conn2), which represent the end of the pipe.

The duplex parameter determines whether the pipe for the last case is bidirectional (that
is, duplex = True), or unidirectional (that is, duplex = False). conn1 can only be used
for receiving messages, and conn2 can only be used for sending messages.

Now, let's see how to exchange objects using pipes.

How to do it...
Here is a simple example of pipes. We have one process pipe that outputs numbers from 0
to 9, and a second process pipe that takes the numbers and squares them:

Let's import the multiprocessing library:1.

import multiprocessing

https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/
https://www.pythoncentral.io/use-queue-beginners-guide/

Process-Based Parallelism Chapter 3

[106]

The pipe function returns a pair of connection objects connected by a two-way2.
pipe. In the example, out_pipe contains the numbers from 0 to 9, which were
generated by the target function of create_items:

def create_items(pipe):
 output_pipe, _ = pipe
 for item in range(10):
 output_pipe.send(item)
 output_pipe.close()

The multiply_items function is based on two pipes, pipe_1 and pipe_2:3.

 def multiply_items(pipe_1, pipe_2):
 close, input_pipe = pipe_1
 close.close()
 output_pipe, _ = pipe_2
 try:
 while True:
 item = input_pipe.recv()

This function returns the product of the elements of each pipe:4.

 output_pipe.send(item * item)
 except EOFError:
 output_pipe.close()

In the main program, pipe_1, and pipe_2 are defined:5.

if __name__== '__main__':

First, process pipe_1 with numbers from 0 to 9:6.

 pipe_1 = multiprocessing.Pipe(True)
 process_pipe_1 = \
 multiprocessing.Process\
 (target=create_items, args=(pipe_1,))
 process_pipe_1.start()

Then, process pipe_2, which picks up the numbers from pipe_1 and squares7.
them:

 pipe_2 = multiprocessing.Pipe(True)
 process_pipe_2 = \
 multiprocessing.Process\
 (target=multiply_items, args=(pipe_1, pipe_2,))
 process_pipe_2.start()

Process-Based Parallelism Chapter 3

[107]

Close the processes:8.

 pipe_1[0].close()
 pipe_2[0].close()

Print out the results:9.

 try:
 while True:
 print (pipe_2[1].recv())
 except EOFError:
 print("End")

How it works...
Essentially, the two pipes, pipe_1 and pipe_2, are created by the
multiprocessing.Pipe(True) statement:

pipe_1 = multiprocessing.Pipe(True)
pipe_2 = multiprocessing.Pipe(True)

The first pipe, pipe_1, simply created a list of integers from 0 to 9, while the second pipe,
pipe_2, processed each element of the list created by pipe_1, calculating the squared
value of each element:

process_pipe_2 = \
 multiprocessing.Process\
 (target=multiply_items, args=(pipe_1, pipe_2,))

Therefore, both processes are closed:

pipe_1[0].close()
pipe_2[0].close()

And the final result is printed:

print (pipe_2[1].recv())

Execute the code by typing the following command:

> python communicating_with_pipe.py

The following result shows the square of the first 9 digits:

0
1
4

Process-Based Parallelism Chapter 3

[108]

9
16
25
36
49
64
81

There's more...
If you need more than two points to communicate, then use a Queue() method. However,
if you need absolute performance, then a Pipe() method is much faster because Queue()
is built on top of Pipe().

 See also
More information on Python and pipes can be found at https:/ / www.python- course. eu/
pipes.php.

Synchronizing processes
Multiple processes can work together to perform a given task. Usually, they share data. It is
important that access to shared data by various processes does not produce inconsistent
data. Processes that cooperate by sharing data must, therefore, act in an orderly manner in
order for that data to be accessible. Synchronization primitives are quite like those
encountered for the library and threading.

Synchronization primitives are as follows:

Lock: This object can be in either the locked or unlocked state. A locked object
has two methods, acquire() and release(), to manage access to a shared
resource.
Event: This object realizes simple communication between processes; one process
signals an event and the other processes wait for it. An event object has two
methods, set() and clear(), to manage its own internal flag.
Condition: This object is used to synchronize parts of a workflow, in sequential
or parallel processes. It has two basic methods: wait() is used to wait for a
condition and notify_all() is used to communicate the condition that was
applied.

https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d
https://www.python-course.eu/pipes.php%0d

Process-Based Parallelism Chapter 3

[109]

Semaphore: This is used to share a common resource, for example, to support a
fixed number of simultaneous connections.
RLock: This defines the recursive lock object. The methods and functionality of
RLock are the same as the threading module.
Barrier: This divides a program into phases as it requires all processes to reach
the barrier before any of the proceeds. Code that is executed after a barrier
cannot be concurrent with the code that was executed before the barrier.

Getting ready
Barrier objects in Python are used to wait for the execution of a fixed number of threads to
complete before a given thread can proceed with the execution of the program.

The following example shows how to synchronize simultaneous tasks with
a barrier() object.

How to do it...
Let's consider four processes, wherein process p1 and process p2 are managed by a barrier
statement, while process p3 and process p4 have no synchronization directives.

To do this, perform the following steps:

Import the relevant libraries:1.

import multiprocessing
from multiprocessing import Barrier, Lock, Process
from time import time
from datetime import datetime

The test_with_barrier function executes the barrier's wait() method:2.

def test_with_barrier(synchronizer, serializer):
 name = multiprocessing.current_process().name
 synchronizer.wait()
 now = time()

When the two processes have called the wait() method, they are released3.
simultaneously:

with serializer:
 print("process %s ----> %s" \

Process-Based Parallelism Chapter 3

[110]

 %(name,datetime.fromtimestamp(now)))

def test_without_barrier():
 name = multiprocessing.current_process().name
 now = time()
 print("process %s ----> %s" \
 %(name ,datetime.fromtimestamp(now)))

In the main program, we created four processes. However, we also need a barrier4.
and lock primitive. The 2 parameter in the Barrier statement stands for the total
number of processes to manage:

if __name__ == '__main__':
 synchronizer = Barrier(2)
 serializer = Lock()
 Process(name='p1 - test_with_barrier'\
 ,target=test_with_barrier,\
 args=(synchronizer,serializer)).start()
 Process(name='p2 - test_with_barrier'\
 ,target=test_with_barrier,\
 args=(synchronizer,serializer)).start()
 Process(name='p3 - test_without_barrier'\
 ,target=test_without_barrier).start()
 Process(name='p4 - test_without_barrier'\
 ,target=test_without_barrier).start()

How it works...
The Barrier object provides one of the Python synchronization techniques with which
single or multiple threads wait until a point in a set of activities and make progress
together.

In the main program, the Barrier object (that is, synchronizer) is defined through the
following statement:

synchronizer = Barrier(2)

Note that the number 2 within the parentheses represents the number of processes that the
barrier should wait upon.

Then, we implement a set of four processes, but only for the p1 and p2 processes. Note
that synchronizer is passed as an argument:

Process(name='p1 - test_with_barrier'\
 ,target=test_with_barrier,\

Process-Based Parallelism Chapter 3

[111]

 args=(synchronizer,serializer)).start()
Process(name='p2 - test_with_barrier'\
 ,target=test_with_barrier,\
 args=(synchronizer,serializer)).start()

Indeed, in the body of the test_with_barrier function, the barrier's wait() method is
used in order to synchronize the processes:

synchronizer.wait()

By running the script, we can see that the p1 and p2 processes print out the same
timestamps as expected:

> python processes_barrier.py
process p4 - test_without_barrier ----> 2019-03-03 08:58:06.159882
process p3 - test_without_barrier ----> 2019-03-03 08:58:06.144257
process p1 - test_with_barrier ----> 2019-03-03 08:58:06.175505
process p2 - test_with_barrier ----> 2019-03-03 08:58:06.175505

There's more...
The following diagram shows you how a barrier works with the two processes:

Process management with a barrier

Process-Based Parallelism Chapter 3

[112]

See also
Please read https:/ /pymotw. com/ 2/multiprocessing/ communication. html for more
examples of process synchronization.

Using a process pool
The process pool mechanism allows the execution of a function across multiple input
values to be parallelized, distributing the input data between processes. The process pool,
therefore, allows implementing the so-called data parallelism that is based on the
distribution of data through the different processes that operate on data in parallel.

Getting ready
The multiprocessing library provides the Pool class for simple parallel processing tasks.

The Pool class has the following methods:

apply(): This blocks until the result is ready.
apply_async(): This is a variant of the apply() (https:/ /docs. python. org/ 2/
library/ functions. html#apply) method, which returns a result object. It is an
asynchronous operation that will not lock the main thread until all the child
classes are executed.
map(): This is the parallel equivalent of the built-in map() (https:/ /docs.
python.org/ 2/ library/ functions. html#map) function. This blocks until the
result is ready, and it chops the iterable data in a number of chunks that are
submitted to the process pool as separate tasks.
map_async(): This is a variant of the map() (https:/ /docs. python. org/ 2/
library/ multiprocessing. html? highlight= pool%20class#multiprocessing.
pool.multiprocessing. Pool. map) method, which returns a result object. If a
callback is specified, then it should be callable, which accepts a single argument.
When the result becomes ready, a callback is applied to it (unless the call fails). A
callback should be completed immediately; otherwise, the thread that handles
the results will get blocked.

https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://pymotw.com/2/multiprocessing/communication.html
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#apply
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map
https://docs.python.org/2/library/multiprocessing.html?highlight=pool%20class#multiprocessing.pool.multiprocessing.Pool.map

Process-Based Parallelism Chapter 3

[113]

How to do it…
This example shows you how to implement a process pool to perform a parallel
application. We create a pool of four processes and then we use the pool's map method to
perform a simple function:

Import the multiprocessing library:1.

import multiprocessing

The Pool method applies function_square to the input element to perform a2.
simple calculation:

def function_square(data):
 result = data*data
 return result

if __name__ == '__main__':

The parameter inputs are a list of integers from 0 to 100:3.

 inputs = list(range(0,100))

The total number of parallel processes is 4:4.

 pool = multiprocessing.Pool(processes=4)

The pool.map method submits to the process pool as separate tasks:5.

 pool_outputs = pool.map(function_square, inputs)
 pool.close()
 pool.join()

The result of the calculation is stored in pool_outputs:6.

 print ('Pool :', pool_outputs)

It is important to note that the result of the pool.map() method is equivalent to Python's
built-in map() function, except that the processes run in parallel.

Process-Based Parallelism Chapter 3

[114]

How it works…
Here, we have created a pool of four processes using the following statement:

 pool = multiprocessing.Pool(processes=4)

Each process has a list of integers as input. Here, pool.map works in the same way as the
map, but uses multiple processes, whose number, four, was previously defined during pool
creation:

 pool_outputs = pool.map(function_square, inputs)

To terminate the computation of the pool, the usual close and join functions are used:

 pool.close()
 pool.join()

To execute this, type the following command:

> python process_pool.py

This is the result that we get after completing the calculation:

Pool : [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225,
256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900,
961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764,
1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916,
3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356,
4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084,
6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100,
8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801]

There's more...
In the previous example, we saw that Pool also provides the map method, which allows us
to apply a function to a different set of data. In particular, the scenario in which the same
operation is performed in parallel on the elements of the input is referred to as data
parallelism.

Process-Based Parallelism Chapter 3

[115]

In the following example, in which we use Pool and map, we create pool with 5 workers
and, through the map method, a function of f is applied to a list of 10 elements:

from multiprocessing import Pool

def f(x):
 return x+10

if __name__ == '__main__':
 p=Pool(processes=5)
 print(p.map(f, [1, 2, 3,5,6,7,8,9,10]))

The output is as follows:

11 12 13 14 15 16 17 18 19 20

See also
To learn more information about process pools, use the following link: https:/ /www.
tutorialspoint.com/ concurrency_ in_ python/ concurrency_ in_python_ pool_ of_
processes.htm.

https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm
https://www.tutorialspoint.com/concurrency_in_python/concurrency_in_python_pool_of_processes.htm

4
Message Passing

This chapter will briefly cover the Message Passing Interface (MPI), which is a
specification for message exchange. The primary goal of the MPI is to establish an efficient,
flexible, and portable standard for message exchange communication.

Mainly, we will show the functions of the library that include synchronous and
asynchronous communication primitives, such as (send/receive) and (broadcast/all-to-all),
the operations of combining the partial results of the calculation (gather/reduce), and
finally, the synchronization primitives between processes (barriers).

Furthermore, the control functions of the communication network will be presented by
defining the topologies.

In this chapter, we will cover the following recipes:

Using the mpi4py Python module
Implementing point-to-point communication
Avoiding deadlock problems
Collective communication using a broadcast
Collective communication using the scatter function
Collective communication using the gather function
Collective communication using Alltoall
The reduction operation
Optimizing communication

Technical requirements
You will need the mpich and mpi4py libraries for this chapter.

Message Passing Chapter 4

[117]

The mpich library is a portable implementation of MPI. It is free software and is available
for various versions of Unix (including Linux and macOS) and Microsoft Windows.

To install mpich, use the installer downloaded from the downloads page (http:/ /www.
mpich.org/static/ downloads/ 1. 4. 1p1/). Moreover, make sure to choose between the 32-
bit or 64-bit versions to get the right one for your machine.

The mpi4py Python module provides Python bindings for the MPI (https:/ /www. mpi-
forum.org) standard. It is implemented on top of the MPI-1/2/3 specification and exposes
an API that is based on the standard MPI-2 C++ bindings.

The installation procedure of mpi4py on a Windows machine is as follows:

C:>pip install mpi4py

Anaconda users must type the following:

C:>conda install mpi4py

Note that for all the examples in this chapter, we used mpi4py installed by using the pip
installer

This implies that the notation used to run the mpi4py examples is as follows:

C:>mpiexec -n x python mpi4py_script_name.py

The mpiexec command is the typical way to start parallel jobs: x is the total number of
processes to use, while mpi4py_script_name.py is the name of the script to be executed.

Understanding the MPI structure
The MPI standard defines the primitives for the management of virtual topologies,
synchronization, and communication between processes. There are several MPI
implementations that differ in the version and features of the standard supported.

We will introduce the MPI standard through the Python mpi4py library.

Before the 1990s, writing parallel applications for different architectures was a more
difficult job than what it is today. Many libraries facilitated the process, but there was not a
standard way to do it. At that time, most parallel applications were destined for scientific
research environments.

http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
http://www.mpich.org/static/downloads/1.4.1p1/
https://www.mpi-forum.org
https://www.mpi-forum.org
https://www.mpi-forum.org
https://www.mpi-forum.org
https://www.mpi-forum.org
https://www.mpi-forum.org
https://www.mpi-forum.org
https://www.mpi-forum.org
https://www.mpi-forum.org
https://www.mpi-forum.org

Message Passing Chapter 4

[118]

The model that was most commonly adopted by the various libraries was the message-
passing model, in which the communication between the processes takes place through the
exchange of messages and without the use of shared resources. For example, the master
process can assign a job to the slaves simply by sending a message that describes the work
to be done. A second, very simple, example here is a parallel application that performs a
merge sort. The data is sorted locally to the processes and the results are passed to other
processes that will deal with the merge.

Since the libraries largely used the same model, albeit with minor differences from each
other, the authors of the various libraries met in 1992 to define a standard interface for the
exchange of messages, and, from here, MPI was born. This interface had to allow
programmers to write portable parallel applications on most parallel architectures, using
the same features and models they were already used to.

Originally, MPI was designed for distributed memory architectures, which began to grow
in popularity 20 years ago:

The distributed memory architecture schema

Over time, distributed memory systems began to be combined with each other, creating
hybrid systems with distributed/shared memory:

The hybrid system architecture schema

Message Passing Chapter 4

[119]

Today, MPI runs on distributed memory, shared memory, and hybrid systems. However,
the programming model remains that of distributed memory, although the true
architecture on which the calculation is performed may be different.

The strengths of MPI can be summarized as follows:

Standardization: It is supported by all High-Performance Computing (HPC)
platforms.
Portability: The changes applied to the source code are minimal, which is useful
if you decide to use the application on a different platform that also supports the
same standard.
Performance: Manufacturers can create implementations optimized for a specific
type of hardware and get better performance.
Functionality: Over 440 routines are defined in MPI-3, but many parallel
programs can be written using fewer than even 10 routines.

In the following sections, we will examine the main Python library for message passing: the
mpi4py library.

Using the mpi4py Python module
The Python programming language provides several MPI modules to write parallel
programs. The most interesting of these is the mpi4py library. It is constructed on top of the
MPI-1/2 specifications and provides an object-oriented interface, which closely follows the
MPI-2 C++ bindings. A C MPI user could use this module without learning a new interface.
Therefore, it is widely used as an almost-full package of an MPI library in Python.

The main applications of the module, which will be described in this chapter, are as
follows:

Point-to-point communication
Collective communication
Topologies

Message Passing Chapter 4

[120]

How to do it...
Let's start our journey to the MPI library by examining the classic code of a program that
prints the phrase Hello, world! on each process that is instantiated:

Import the mpi4py library:1.

from mpi4py import MPI

In MPI, the processes involved in the execution of a parallel program are
identified by a sequence of non-negative integers called ranks.

If we have a number (p of processes) that runs a program, then the processes will2.
have a rank that goes from 0 to p-1. In particular, in order to assess the rank of
each process, we must use the COMM_WORLD MPI function in particular. This
function is called a communicator, as it defines its own set of all processes that
can communicate together:

 comm = MPI.COMM_WORLD

Finally, the following Get_rank() function returns rank of the process calling it:3.

rank = comm.Get_rank()

Once evaluated, rank is printed:4.

print ("hello world from process ", rank)

How it works...
According to the MPI execution model, our application consists of N (5 in this
example) autonomous processes, each with their own local memory able to communicate
data through the exchange of messages.

The communicator defines a group of processes that can communicate with each other.
The MPI_COMM_WORLD work used here is the default communicator and includes all
processes.

Message Passing Chapter 4

[121]

The identification of a process is based on ranks. Each process is assigned a rank for each
communicator to which it belongs. The rank is an integer that is assigned, which starts from
zero and identifies each individual process in the context of a specific communicator. The
common practice is to define the process with a global rank of 0 as the master process.
Through the rank, the developer can specify what the sending process is and what the
recipient processes are instead.

It should be noted that, for illustration purposes only, the stdout output will not always be
ordered, as multiple processes can apply at the same time by writing on the screen and the
OS arbitrarily chooses the order. So, we are ready for a fundamental observation: every
process involved in the execution of MPI runs the same compiled binary, so each process
receives the same instructions to be executed.

To execute the code, type the following command line:

C:>mpiexec -n 5 python helloworld_MPI.py

This is the result that we will get after executing this code (notice how the order of
execution of the processes is not sequential):

hello world from process 1
hello world from process 0
hello world from process 2
hello world from process 3
hello world from process 4

It should be noted that the number of processes to be used is strictly
dependent on the characteristics of the machine on which the program
must run.

There's more...
MPI belongs to the Single Program Multiple Data (SPMD) programming technique.

SPMD is a programming technique in which all processes execute the same program, each
on different data. The distinction in executions between different processes occurs by
differentiating the flow of the program, based on the local rank of the process.

Message Passing Chapter 4

[122]

SPMD is a programming technique in which a single program is executed by several
processes at the same time, but each process can operate on different data. At the same
time, the processes can execute both the same instruction and different instructions.
Obviously, the program will contain appropriate instructions that allow the execution of
only parts of the code and/or to operate on a subset of the data. This can be implemented
using different programming models, and all executables start at the same time.

See also
The complete reference to the mpi4py library can be found at https:/ /mpi4py.
readthedocs.io/en/ stable/ .

Implementing point-to-point communication
Point-to-point operations consist of the exchange of messages between two processes. In a
perfect world, every sending operation would be perfectly synchronized with the
respective reception operation. Obviously, this is not the case, and the MPI
implementation must be able to preserve the data sent when the sender and recipient
processes are not synchronized. Typically, this occurs using a buffer, which is transparent
to the developer and entirely managed by the mpi4py library.

The mpi4py Python module enables point-to-point communication via two functions:

Comm.Send(data, process_destination): This function sends data to the
destination process identified by its rank in the communicator group.
Comm.Recv(process_source): This function receives data from the
sourcing process, which is also identified by its rank in the communicator group.

The Comm parameter, which is short for communicator, defines the group of processes that
may communicate through message passing using comm = MPI.COMM_WORLD.

How to do it...
In the following example, we will utilize the comm.send and comm.recv directives to
exchange messages between different processes:

Import the relevant mpi4py library:1.

from mpi4py import MPI

https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/

Message Passing Chapter 4

[123]

Then, we define the communicator parameter, namely comm, through the2.
MPI.COMM_WORLD statement:

comm=MPI.COMM_WORLD

The rank parameter is used to identify the process itself:3.

rank = comm.rank

It is useful to print out the rank of a process:4.

print("my rank is : " , rank)

Then, we start considering the rank of the process. In this case, for the process of5.
rank equal to 0, we set destination_process and data (in this case data =
10000000) to be sent:

if rank==0:
 data= 10000000
 destination_process = 4

Then, by using the comm.send statement, the data that was previously set is sent6.
to the destination process:

 comm.send(data,dest=destination_process)
 print ("sending data %s " %data + \
 "to process %d" %destination_process)

For the process of rank equal to 1, the destination_process value is 8, while7.
the data to be sent is the "hello" string:

if rank==1:
 destination_process = 8
 data= "hello"
 comm.send(data,dest=destination_process)
 print ("sending data %s :" %data + \
 "to process %d" %destination_process)

The process of rank equal to 4 is a receiver process. Indeed, the source process8.
(that is, the process of rank equal to 0) is set as a parameter in the comm.recv
statement:

if rank==4:
 data=comm.recv(source=0)

Message Passing Chapter 4

[124]

Now, using the following code, the data received from the process of 0 must be9.
displayed:

 print ("data received is = %s" %data)

The last process to be set is number 9. Here, we define the source process of rank10.
equal to 1 as a parameter in the comm.recv statement:

if rank==8:
 data1=comm.recv(source=1)

The data1 value is then printed:11.

 print ("data1 received is = %s" %data1)

How it works...
We ran the example with a total number of processes equal to 9. So, in
the comm communicator group, we have nine tasks that can communicate with each other:

comm=MPI.COMM_WORLD

Also, to identify a task or processes inside the group, we use their rank value:

rank = comm.rank

We have two sender processes and two receiver processes. The process of rank equal to 0
sends numerical data to the receiver process of rank equal to 4:

if rank==0:
 data= 10000000
 destination_process = 4
 comm.send(data,dest=destination_process)

Similarly, we must specify the receiver process of rank equal to 4. We also note that
the comm.recv statement must contain, as an argument, the rank of the sender process:

if rank==4:
 data=comm.recv(source=0)

For the other sender and receiver processes (the process of rank equal to 1 and the process
of rank equal to 8, respectively), the situation is the same, the only difference being the
type of data.

Message Passing Chapter 4

[125]

In this case, for the sender process, we have a string that is to be sent:

if rank==1:
 destination_process = 8
 data= "hello"
 comm.send(data,dest=destination_process)

For the receiver process of rank equal to 8, the rank of the sender process is pointed out:

if rank==8:
 data1=comm.recv(source=1)

The following diagram summarizes the point-to-point communication protocol in mpi4py:

The send/receive transmission protocol

As you can see, it describes a two-step process, consisting of sending some DATA from one
task (sender) and another task (receiver) receiving this data. The sending task must specify
the data to be sent and its destination (the receiver process), while the receiving task has to
specify the source of the message to be received.

To run the script, we shall use 9 processes:

C:>mpiexec -n 9 python pointToPointCommunication.py

Message Passing Chapter 4

[126]

This is the output that you'll get after you run the script:

my rank is : 7
my rank is : 5
my rank is : 2
my rank is : 6
my rank is : 3
my rank is : 1
sending data hello :to process 8
my rank is : 0
sending data 10000000 to process 4
my rank is : 4
data received is = 10000000
my rank is : 8
data1 received is = hello

There's more...
The comm.send() and comm.recv() functions are blocking functions, which means that
they block the caller until the buffered data involved can be used safely. Also, in MPI, there
are two management methods of sending and receiving messages:

Buffered mode: The flow control returns to the program as soon as the data to be
sent has been copied to a buffer. This does not mean that the message is sent or
received.
Synchronous mode: The function only gets terminated when the corresponding
receive function begins receiving the message.

See also
An interesting tutorial on this topic can be found at https:/ /github. com/antolonappan/
MPI_tutorial.

Avoiding deadlock problems
A common problem we face is deadlock. This is a situation where two (or more) processes
block each other and wait for the other to perform a certain action that serves another and
vice versa. The mpi4py module doesn't provide any specific functionality to resolve the
deadlock problem, but there are some measures that the developer must follow in order to
avoid the problem of deadlock.

https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial
https://github.com/antolonappan/MPI_tutorial

Message Passing Chapter 4

[127]

How to do it...
Let's first analyze the following Python code, which will introduce a typical deadlock
problem. We have two processes—rank equal to 1 and rank equal to 5—that communicate
with each other and both have the data sender and data receiver functionalities:

Import the mpi4py library:1.

from mpi4py import MPI

Define the communicator as comm and the rank parameter:2.

comm=MPI.COMM_WORLD
rank = comm.rank
print("my rank is %i" % (rank))

The process of rank equal to 1 sends and receives data from the process of rank3.
equal to 5:

if rank==1:
 data_send= "a"
 destination_process = 5
 source_process = 5
 data_received=comm.recv(source=source_process)
 comm.send(data_send,dest=destination_process)
 print ("sending data %s " %data_send + \
 "to process %d" %destination_process)
 print ("data received is = %s" %data_received)

In the same way, here, we define the process of rank equal to 5:4.

if rank==5:
 data_send= "b"

The destination and sender processes are equal to 1:5.

 destination_process = 1
 source_process = 1
 comm.send(data_send,dest=destination_process)
 data_received=comm.recv(source=source_process)
 print ("sending data %s :" %data_send + \
 "to process %d" %destination_process)
 print ("data received is = %s" %data_received)

Message Passing Chapter 4

[128]

How it works...
If we try to run this program (it makes sense to execute it with only two processes), then we
note that none of the two processes can proceed:

C:\>mpiexec -n 9 python deadLockProblems.py

my rank is : 8
my rank is : 6
my rank is : 7
my rank is : 2
my rank is : 4
my rank is : 3
my rank is : 0
my rank is : 1
sending data a to process 5
data received is = b
my rank is : 5
sending data b :to process 1
data received is = a

Both the processes prepare to receive a message from the other and get stuck there. This
happens because of the comm.recv() MPI function and the comm.send() MPI blocking
them. This means that the calling process awaits their completion. As for the comm.send()
MPI, the completion occurs when the data has been sent and may be overwritten without
modifying the message.

The completion of the comm.recv() MPI instead occurs when the data has been received
and can be used. To solve this problem, the first idea is to invert the comm.recv() MPI
with the comm.send() MPI, as follows:

if rank==1:
 data_send= "a"
 destination_process = 5
 source_process = 5
 comm.send(data_send,dest=destination_process)
 data_received=comm.recv(source=source_process)

 print ("sending data %s " %data_send + \
 "to process %d" %destination_process)
 print ("data received is = %s" %data_received)
if rank==5:
 data_send= "b"
 destination_process = 1
 source_process = 1
 data_received=comm.recv(source=source_process)

Message Passing Chapter 4

[129]

 comm.send(data_send,dest=destination_process)

 print ("sending data %s :" %data_send + \
 "to process %d" %destination_process)
 print ("data received is = %s" %data_received)

This solution, even if correct, does not guarantee that we will avoid deadlock. In fact,
communication is performed through a buffer with the instruction of comm.send().

MPI copies the data to be sent. This mode works without problems, but only if the buffer is
able to keep them all. If this does not happen, then there is a deadlock: the sender cannot
finish sending the data because the buffer is busy, and the receiver cannot receive data
because it is blocked by the comm.send() MPI call, which has not yet completed.

At this point, the solution that allows us to avoid deadlocks is used to swap the sending
and receiving functions so as to make them asymmetrical:

if rank==1:
 data_send= "a"
 destination_process = 5
 source_process = 5
 comm.send(data_send,dest=destination_process)
 data_received=comm.recv(source=source_process)
if rank==5:
 data_send= "b"
 destination_process = 1
 source_process = 1
 comm.send(data_send,dest=destination_process)
 data_received=comm.recv(source=source_process)

Finally, we get the correct output:

C:\>mpiexec -n 9 python deadLockProblems.py

my rank is : 4
my rank is : 0
my rank is : 3
my rank is : 8
my rank is : 6
my rank is : 7
my rank is : 2
my rank is : 1
sending data a to process 5
data received is = b
my rank is : 5
sending data b :to process 1
data received is = a

Message Passing Chapter 4

[130]

There's more...
The solution proposed to the deadlock is not the only solution.

There is, for example, a function that unifies the single call that sends a message to a given
process and receives another message that comes from another process. This function is
called Sendrecv:

Sendrecv(self, sendbuf, int dest=0, int sendtag=0, recvbuf=None, int
source=0, int recvtag=0, Status status=None)

As you can see, the required parameters are the same as the comm.send()
and comm.recv() MPI (in this case, also the function blocks). However, Sendrecv offers
the advantage of leaving the communication subsystem responsible for checking the
dependencies between sending and receiving, thus avoiding the deadlock.

In this way, the code of the previous example becomes the following:

if rank==1:
 data_send= "a"
 destination_process = 5
 source_process = 5
 data_received=comm.sendrecv(data_send,dest=\
 destination_process,\
 source =source_process)
if rank==5:
 data_send= "b"
 destination_process = 1
 source_process = 1
 data_received=comm.sendrecv(data_send,dest=\
 destination_process,\
 source=source_process)

See also
An interesting analysis of how parallel programming is difficult due to deadlock
management can be found at https:/ /codewithoutrules. com/ 2017/ 08/16/ concurrency-
python/.

https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/
https://codewithoutrules.com/2017/08/16/concurrency-python/

Message Passing Chapter 4

[131]

Collective communication using a broadcast
During the development of parallel code, we often find ourselves in a situation where we
must share, between multiple processes, the value of a certain variable at runtime or certain
operations on variables that each process provides (presumably with different values).

To resolve these types of situations, communication trees are used (for example, process 0
sends data to the processes 1 and 2, which will, respectively, take care of sending them to
processes 3, 4, 5, 6, and so on).

Instead, MPI libraries provide functions that are ideal for the exchange of information or
the use of multiple processes that are clearly optimized for the machine in which they are
performed:

Broadcasting data from process 0 to processes 1, 2, 3, and 4

A communication method that involves all the processes that belong to a communicator is
called a collective communication. Consequently, collective communication generally
involves more than two processes. However, instead of this, we will call the collective
communication broadcast, wherein a single process sends the same data to any other
process.

Getting ready
The mpi4py broadcast functionalities are offered by the following method:

buf = comm.bcast(data_to_share, rank_of_root_process)

This function sends the information contained in the message process root to every other
process that belongs to the comm communicator.

Message Passing Chapter 4

[132]

How to do it...
Let's now see an example in which we've used the broadcast function. We have a root
process of rank equal to 0 that shares its own data, variable_to_share, with the other
processes defined in the communicator group:

Let's import the mpi4py library:1.

from mpi4py import MPI

Now, let's define the communicator and the rank parameter:2.

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

As far as the process of rank equal to 0 is concerned, we define the variable to be3.
shared among the other processes:

if rank == 0:
 variable_to_share = 100
else:
 variable_to_share = None

Finally, we define a broadcast, having the rank process equal to zero as its root:4.

variable_to_share = comm.bcast(variable_to_share, root=0)
print("process = %d" %rank + " variable shared = %d " \
 %variable_to_share)

How it works...
The root process of rank equal to 0 instantiates a variable, variable_to_share, which is
equal to 100. This variable will be shared with the other processes of the communication
group:

if rank == 0:
 variable_to_share = 100

To perform this, we also introduce the broadcast communication statement:

variable_to_share = comm.bcast(variable_to_share, root=0)

Message Passing Chapter 4

[133]

Here, the parameters in the function are as follows:

The data to be shared (variable_to_share).
The root process, that is, the process of rank equal to 0 (root=0).

Running the code, we have a communication group of 10 processes,
and variable_to_share is shared between the other processes in the group. Finally,
the print statement visualizes the rank of the running process and the value of its variable:

print("process = %d" %rank + " variable shared = %d " \
 %variable_to_share)

After setting 10 processes, the output obtained is as follows:

C:\>mpiexec -n 10 python broadcast.py
process = 0
variable shared = 100
process = 8
variable shared = 100
process = 2 variable
shared = 100
process = 3
variable shared = 100
process = 4
variable shared = 100
process = 5
variable shared = 100
process = 9
variable shared = 100
process = 6
variable shared = 100
process = 1
variable shared = 100
process = 7
variable shared = 100

There's more...
Collective communication allows simultaneous data transmission between multiple
processes in a group. The mpi4py library provides collective communications, but only in
the blocking version (that is, it blocks the caller method until the buffered data involved can
safely be used).

Message Passing Chapter 4

[134]

The most commonly used collective communication operations are as follows:

Barrier synchronization across the group's processes
Communication functions:

Broadcasting data from one process to all processes in the group
Gathering data from all processes to one process
Scattering data from one process to all processes

Reduction operations

See also
Refer to this link (https:/ /nyu- cds. github. io/python- mpi/) to find a complete
introduction to Python and MPI.

Collective communication using the scatter
function
The scatter functionality is very similar to a scatter broadcast, but with one major
difference: while comm.bcast sends the same data to all listening processes,
comm.scatter can send chunks of data in an array to different processes.

The following diagram illustrates the scatter functionality:

Scattering data from process 0 to processes 1, 2, 3, and 4

https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/
https://nyu-cds.github.io/python-mpi/

Message Passing Chapter 4

[135]

The comm.scatter function takes the elements of the array and distributes them to the
processes according to their rank, for which the first element will be sent to process 0, the
second element to process 1, and so on. The function implemented in mpi4py is as follows:

recvbuf = comm.scatter(sendbuf, rank_of_root_process)

How to do it...
In the following example, we'll see how to distribute data to different processes using the
scatter functionality:

Import the mpi4py library:1.

from mpi4py import MPI

Next, we define the comm and rank parameters in the usual way:2.

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

For the process of rank equal to 0, the following array will be scattered:3.

if rank == 0:
 array_to_share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10]
else:
 array_to_share = None

Then, recvbuf is set. The root process is the process of rank equal to 0:4.

recvbuf = comm.scatter(array_to_share, root=0)
print("process = %d" %rank + " recvbuf = %d " %recvbuf)

How it works...
The process of rank equal to 0 distributes the array_to_share data structure to other
processes:

array_to_share = [1, 2, 3, 4 ,5 ,6 ,7, 8 ,9 ,10]

The recvbuf parameter indicates the value of the ith variable that will be sent to the
process through the comm.scatter statement:

recvbuf = comm.scatter(array_to_share, root=0)

Message Passing Chapter 4

[136]

The output is as follows:

C:\>mpiexec -n 10 python scatter.py
process = 0 variable shared = 1
process = 4 variable shared = 5
process = 6 variable shared = 7
process = 2 variable shared = 3
process = 5 variable shared = 6
process = 3 variable shared = 4
process = 7 variable shared = 8
process = 1 variable shared = 2
process = 8 variable shared = 9
process = 9 variable shared = 10

We also remark that one of the restrictions to comm.scatter is that you can scatter as
many elements as the processors you specify in the execution statement. In fact, if you
attempt to scatter more elements than the processors specified (three, in this example), then
you will get an error similar to the following:

C:\> mpiexec -n 3 python scatter.py
Traceback (most recent call last):
 File "scatter.py", line 13, in <module>
 recvbuf = comm.scatter(array_to_share, root=0)
 File "Comm.pyx", line 874, in mpi4py.MPI.Comm.scatter
 (c:\users\utente\appdata\local\temp\pip-build-h14iaj\mpi4py\
 src\mpi4py.MPI.c:73400)
 File "pickled.pxi", line 658, in mpi4py.MPI.PyMPI_scatter
 (c:\users\utente\appdata\local\temp\pip-build-h14iaj\mpi4py\src\
 mpi4py.MPI.c:34035)
 File "pickled.pxi", line 129, in mpi4py.MPI._p_Pickle.dumpv
 (c:\users\utente\appdata\local\temp\pip-build-h14iaj\mpi4py
 \src\mpi4py.MPI.c:28325)
 ValueError: expecting 3 items, got 10
 mpiexec aborting job...

job aborted:
rank: node: exit code[: error message]
0: Utente-PC: 123: mpiexec aborting job
1: Utente-PC: 123
2: Utente-PC: 123

Message Passing Chapter 4

[137]

There's more...
The mpi4py library provides two other functions that are used to scatter data:

comm.scatter(sendbuf, recvbuf, root=0): This function sends data from
one process to all other processes in a communicator.
comm.scatterv(sendbuf, recvbuf, root=0): This function scatters data
from one process to all other processes in a given group that provide a different
amount of data and displacements at the sending side.

The sendbuf and recvbuf arguments must be given in terms of a list (as in
the comm.send point-to-point function):

buf = [data, data_size, data_type]

Here, data must be a buffer-like object of the data_size size and of the data_type type.

See also
An interesting tutorial on MPI broadcasting is presented at https:/ /pythonprogramming.
net/mpi-broadcast- tutorial- mpi4py/ .

Collective communication using the gather
function
The gather function performs the inverse of the scatter function. In this case, all
processes send data to a root process that collects the data received.

Getting ready
The gather function, which is implemented in mpi4py, is as follows:

recvbuf = comm.gather(sendbuf, rank_of_root_process)

https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/
https://pythonprogramming.net/mpi-broadcast-tutorial-mpi4py/

Message Passing Chapter 4

[138]

Here, sendbuf is the data that is sent, and rank_of_root_process represents the
processing of the receiver of all the data:

Gathering data from processes 1, 2, 3, and 4

How to do it...
In the following example, we'll represent the condition shown in the preceding diagram, in
which each process builds its own data, which is to be sent to the root processes that are
identified with the rank zero:

Type the necessary import:1.

from mpi4py import MPI

Next, we define the following three parameters. The comm parameter is the2.
communicator, rank provides the rank of the process, and size is the total
number of processes:

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

Here, we define the data to be gathered from the process of rank zero:3.

data = (rank+1)**2

Message Passing Chapter 4

[139]

Finally, the gathering is provided through the comm.gather function. Also, note4.
that the root process (the process that will gather the data from the other ones) is
the zero rank process:

data = comm.gather(data, root=0)

For the rank equal to the 0 process, the data gathered and the sending process5.
are printed out:

if rank == 0:
 print ("rank = %s " %rank +\
 "...receiving data to other process")
 for i in range(1,size):
 value = data[i]
 print(" process %s receiving %s from process %s"\
 %(rank , value , i))

How it works...
The root process of 0 receives data from the other four processes, as represented in the
previous diagram.

We set n (= 5) processes sending their data:

 data = (rank+1)**2

If the rank of the process is 0, then the data is collected in an array:

if rank == 0:
 for i in range(1,size):
 value = data[i]

The gathering of data is given, instead, by the following function:

data = comm.gather(data, root=0)

Finally, we run the code setting the group of processes equal to 5:

C:\>mpiexec -n 5 python gather.py
rank = 0 ...receiving data to other process
process 0 receiving 4 from process 1
process 0 receiving 9 from process 2
process 0 receiving 16 from process 3
process 0 receiving 25 from process 4

Message Passing Chapter 4

[140]

There's more...
To collect data, mpi4py provides the following functions:

Gathering to one task: comm.Gather, comm.Gatherv, and comm.gather
Gathering to all tasks: comm.Allgather, comm.Allgatherv,
and comm.allgather

See also
More information on mpi4py can be found at http:/ / www.ceci- hpc. be/ assets/ training/
mpi4py.pdf.

Collective communication using Alltoall
The Alltoall collective communication combines the scatter and gather
functionalities.

How to do it...
In the following example, we'll see an mpi4py implementation of comm.Alltoall. We'll
consider a communicator a group of processes, where each process sends and receives an
array of numerical data from the other processes defined in the group:

For this example, the relevant mpi4py and numpy libraries must be imported:1.

from mpi4py import MPI
import numpy

As in the previous example, we need to set the same parameters, comm, size,2.
and rank:

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf
http://www.ceci-hpc.be/assets/training/mpi4py.pdf

Message Passing Chapter 4

[141]

Hence, we must define the data that each process will send (senddata) and, at 3.
the same time, receive (recvdata) from the other processes:

senddata = (rank+1)*numpy.arange(size,dtype=int)
recvdata = numpy.empty(size,dtype=int)

Finally, the Alltoall function is executed:4.

comm.Alltoall(senddata,recvdata)

The data that is sent and received for each process is displayed:5.

print(" process %s sending %s receiving %s"\
 %(rank , senddata , recvdata))

How it works...
The comm.alltoall method takes the ith object from the sendbuf argument of task j and
copies it into the jth object of the recvbuf argument of task i.

If we run the code with a communicator group of 5 processes, then our output is as follows:

C:\>mpiexec -n 5 python alltoall.py
process 0 sending [0 1 2 3 4] receiving [0 0 0 0 0]
process 1 sending [0 2 4 6 8] receiving [1 2 3 4 5]
process 2 sending [0 3 6 9 12] receiving [2 4 6 8 10]
process 3 sending [0 4 8 12 16] receiving [3 6 9 12 15]
process 4 sending [0 5 10 15 20] receiving [4 8 12 16 20]

We could also figure out what happened by using the following schema:

The Alltoall collective communication

Message Passing Chapter 4

[142]

Our observations regarding the schema are as follows:

The P0 process contains the [0 1 2 3 4] data array, where it assigns 0 to itself, 1 to
the P1 process, 2 to the P2 process, 3 to the P3 process, and 4 to the P4 process;
The P1 process contains the [0 2 4 6 8] data array, where it assigns 0 to the
P0 process, 2 to itself, 4 to the P2 process, 6 to the P3 process, and 8 to
the P4 process;
The P2 process contains the [0 3 6 9 12] data array, where it assigns 0 to the
P0 process, 3 to the P1 process, 6 to itself, 9 to the P3 process, and 12 to the
P4 process;
The P3 process contains the [0 4 8 12 16] data array, where it assigns 0 to the
P0 process, 4 to the P1 process, 8 to the P2 process, 12 to itself, and 16 to the
P4 process;
The P4 process contains the [0 5 10 15 20] data array, where it assigns 0
to the P0 process, 5 to the P1 process, 10 to the P2 process, 15 to the P3 process,
and 20 to itself.

There's more...
Alltoall personalized communication is also known as a total exchange. This operation is
used in a variety of parallel algorithms, such as the fast Fourier transform, matrix
transpose, sample sort, and some parallel database join operations.

In mpi4py, there are three types of Alltoall collective communication:

comm.Alltoall(sendbuf, recvbuf): The Alltoall scatter/gather sends data
from all-to-all processes in a group.
comm.Alltoallv(sendbuf, recvbuf): The Alltoall scatter/gather vector
sends data from all-to-all processes in a group, providing a different amount of
data and displacements.
comm.Alltoallw(sendbuf, recvbuf): Generalized Alltoall
communication allows different counts, displacements, and datatypes for each
partner.

See also
An interesting analysis of MPI Python modules can be downloaded from https:/ /www.
duo.uio.no/bitstream/ handle/ 10852/ 10848/ WenjingLinThesis. pdf.

https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/10848/WenjingLinThesis.pdf

Message Passing Chapter 4

[143]

The reduction operation
Similar to comm.gather, comm.reduce takes an array of input elements in each process
and returns an array of output elements to the root process. The output elements contain
the reduced result.

Getting ready
In mpi4py, we define the reduction operation through the following statement:

comm.Reduce(sendbuf, recvbuf, rank_of_root_process, op =
type_of_reduction_operation)

We must note that the difference with the comm.gather statement resides in the op
parameter, which is the operation that you wish to apply to your data, and the mpi4py
module contains a set of reduction operations that can be used.

How to do it...
Now, we'll see how to implement the sum of an array of elements with
the MPI.SUM reduction operation by using the reduction functionality. Each process will
manipulate an array of size 10.

For array manipulation, we use the functions provided by the numpy Python module:

Here, the relevant libraries, mpi4py and numpy, are imported:1.

import numpy
from mpi4py import MPI

Define the comm, size, and rank parameters:2.

comm = MPI.COMM_WORLD
size = comm.size
rank = comm.rank

Then, the size of the array (array_size) is set:3.

array_size = 10

Message Passing Chapter 4

[144]

The data to be sent and received is defined:4.

recvdata = numpy.zeros(array_size,dtype=numpy.int)
senddata = (rank+1)*numpy.arange(array_size,dtype=numpy.int)

The process sender and the sent data are printed out:5.

print(" process %s sending %s " %(rank , senddata))

Finally, the Reduce operation is executed. Note that the root process is set to6.
0 and the op parameter is set to MPI.SUM:

comm.Reduce(senddata,recvdata,root=0,op=MPI.SUM)

The output of the reduction operation is then shown, as follows:7.

print ('on task',rank,'after Reduce: data = ',recvdata)

How it works...
To perform the reduction sum, we use the comm.Reduce statement. Also, we identify with
rank zero, which is the root process that will contain recvbuf, which represents the final
result of the computation:

comm.Reduce(senddata,recvdata,root=0,op=MPI.SUM)

It makes sense to run the code with a communicator group of 10 processes, as this is the
size of the manipulated array.

The output appears as follows:

C:\>mpiexec -n 10 python reduction.py
 process 1 sending [0 2 4 6 8 10 12 14 16 18]
on task 1 after Reduce: data = [0 0 0 0 0 0 0 0 0 0]
 process 5 sending [0 6 12 18 24 30 36 42 48 54]
on task 5 after Reduce: data = [0 0 0 0 0 0 0 0 0 0]
 process 7 sending [0 8 16 24 32 40 48 56 64 72]
on task 7 after Reduce: data = [0 0 0 0 0 0 0 0 0 0]
 process 3 sending [0 4 8 12 16 20 24 28 32 36]
on task 3 after Reduce: data = [0 0 0 0 0 0 0 0 0 0]
 process 9 sending [0 10 20 30 40 50 60 70 80 90]
on task 9 after Reduce: data = [0 0 0 0 0 0 0 0 0 0]
 process 6 sending [0 7 14 21 28 35 42 49 56 63]
on task 6 after Reduce: data = [0 0 0 0 0 0 0 0 0 0]
 process 2 sending [0 3 6 9 12 15 18 21 24 27]
on task 2 after Reduce: data = [0 0 0 0 0 0 0 0 0 0]

Message Passing Chapter 4

[145]

 process 8 sending [0 9 18 27 36 45 54 63 72 81]
on task 8 after Reduce: data = [0 0 0 0 0 0 0 0 0 0]
 process 4 sending [0 5 10 15 20 25 30 35 40 45]
on task 4 after Reduce: data = [0 0 0 0 0 0 0 0 0 0]
 process 0 sending [0 1 2 3 4 5 6 7 8 9]
on task 0 after Reduce: data = [0 55 110 165 220 275 330 385 440 495]

There's more...
Note that with the op=MPI.SUM option, we apply the sum operation to all the elements of
the column array. To better understand how the reduction operates, let's look at the
following diagram:

Reduction in collective communication

The sending operation is as follows:

The P0 process sends the [0 1 2] data array.
The P1 process sends the [0 2 4] data array.
The P2 process sends the [0 3 6] data array.

The reduction operation sums the ith elements of each task and then puts the result in the ith

element of the array in the P0 root process. For the receiving operation, the P0
process receives the [0 6 12] data array.

Some of the reduction operations defined by MPI are as follows:

MPI.MAX: This returns the maximum element.
MPI.MIN: This returns the minimum element.
MPI.SUM: This sums up the elements.

Message Passing Chapter 4

[146]

MPI.PROD: This multiplies all elements.
MPI.LAND: This performs the AND logical operation across the elements.
MPI.MAXLOC: This returns the maximum value and the rank of the process that
owns it.
MPI.MINLOC: This returns the minimum value and the rank of the process that
owns it.

See also
At http://mpitutorial. com/ tutorials/ mpi-reduce- and-allreduce/ , you can find a good
tutorial on this topic and much more.

Optimizing communication
An interesting feature that is provided by MPI regards virtual topologies. As already noted,
all the communication functions (point-to-point or collective) refer to a group of processes.
We have always used the MPI_COMM_WORLD group that includes all processes. It assigns a
rank of 0 to n-1 for each process that belongs to a communicator of the size n.

However, MPI allows us to assign a virtual topology to a communicator. It defines an
assignment of labels to the different processes: by building a virtual topology, each node
will communicate only with its virtual neighbor, improving performance because it reduces
execution times.

For example, if the rank was randomly assigned, then a message could be forced to pass to
many other nodes before it reaches the destination. Beyond the question of performance, a
virtual topology makes sure that the code is clearer and more readable.

MPI provides two building topologies. The first construct creates Cartesian topologies,
while the latter creates any kind of topologies. Specifically, in the second case, we must
supply the adjacency matrix of the graph that you want to build. We will only deal with
Cartesian topologies, through which it is possible to build several structures that are widely
used, such as mesh, ring, and toroid.

The mpi4py function used to create a Cartesian topology is as follows:

comm.Create_cart((number_of_rows,number_of_columns))

Here, number_of_rows and number_of_columns specify the rows and columns of the
grid that is to be made.

http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/

Message Passing Chapter 4

[147]

How to do it...
In the following example, we see how to implement a Cartesian topology of the size M×N.
Also, we define a set of coordinates to understand how all the processes are disposed of:

Import all the relevant libraries:1.

from mpi4py import MPI
import numpy as np

Define the following parameter in order to move along the topology:2.

UP = 0
DOWN = 1
LEFT = 2
RIGHT = 3

For each process, the following array defines the neighbor processes:3.

neighbour_processes = [0,0,0,0]

In the main program, the comm.rank and size parameters are then defined:4.

if __name__ == "__main__":
 comm = MPI.COMM_WORLD
 rank = comm.rank
 size = comm.size

Now, let's build the topology:5.

 grid_rows = int(np.floor(np.sqrt(comm.size)))
 grid_column = comm.size // grid_rows

The following conditions ensure that the processes are always within the6.
topology:

 if grid_rows*grid_column > size:
 grid_column -= 1
 if grid_rows*grid_column > size:
 grid_rows -= 1

The rank equal to 0 process starts the topology construction:7.

 if (rank == 0) :
 print("Building a %d x %d grid topology:"\
 % (grid_rows, grid_column))
 cartesian_communicator = \
 comm.Create_cart(\

Message Passing Chapter 4

[148]

 (grid_rows, grid_column), \
 periods=(False, False), \
 reorder=True)
 my_mpi_row, my_mpi_col = \
 cartesian_communicator.Get_coords\
 (cartesian_communicator.rank)

 neighbour_processes[UP], neighbour_processes[DOWN]\
 = cartesian_communicator.Shift(0, 1)
 neighbour_processes[LEFT], \
 neighbour_processes[RIGHT] = \
 cartesian_communicator.Shift(1, 1)
 print ("Process = %s
 \row = %s\n \
 column = %s ----> neighbour_processes[UP] = %s \
 neighbour_processes[DOWN] = %s \
 neighbour_processes[LEFT] =%s neighbour_processes[RIGHT]=%s" \
 %(rank, my_mpi_row, \
 my_mpi_col,neighbour_processes[UP], \
 neighbour_processes[DOWN], \
 neighbour_processes[LEFT] , \
 neighbour_processes[RIGHT]))

How it works...
For each process, the output should read as follows: if neighbour_processes = -1, then
it has no topological proximity, otherwise, neighbour_processes shows the rank of the
process closely.

The resulting topology is a mesh of 2×2 (refer to the previous diagram for a mesh
representation), the size of which is equal to the number of processes in the input; that is,
four:

grid_row = int(np.floor(np.sqrt(comm.size)))
grid_column = comm.size // grid_row
if grid_row*grid_column > size:
 grid_column -= 1
if grid_row*grid_column > size:
 grid_rows -= 1

Message Passing Chapter 4

[149]

Then, the Cartesian topology is built using the comm.Create_cart function (note also the
parameter, periods = (False,False)):

cartesian_communicator = comm.Create_cart(\
 (grid_row, grid_column), periods=(False, False), reorder=True)

To know the position of the process, we use the Get_coords() method in the following
form:

my_mpi_row, my_mpi_col =\
cartesian_communicator.Get_coords(cartesian_communicator.rank)

For the processes, in addition to getting their coordinates, we must calculate and find out
which processes are topologically closer. For this purpose, we use the comm.Shift
(rank_source,rank_dest) function:

neighbour_processes[UP], neighbour_processes[DOWN] =\
 cartesian_communicator.Shift(0, 1)

neighbour_processes[LEFT], neighbour_processes[RIGHT] = \
 cartesian_communicator.Shift(1, 1)

The topology obtained is as follows:

The virtual mesh 2x2 topology

As the diagram shows, the P0 process is chained to the P1 (RIGHT) and P2 (DOWN)
processes. The P1 process is chained to the P3 (DOWN) and P0 (LEFT) processes, the P3
process is chained to the P1 (UP) and P2 (LEFT) processes, and the P2 process is chained
to the P3 (RIGHT) and P0 (UP) processes.

Message Passing Chapter 4

[150]

Finally, by running the script, we obtain the following result:

C:\>mpiexec -n 4 python virtualTopology.py
Building a 2 x 2 grid topology:
Process = 0 row = 0 column = 0
 ---->
neighbour_processes[UP] = -1
neighbour_processes[DOWN] = 2
neighbour_processes[LEFT] =-1
neighbour_processes[RIGHT]=1

Process = 2 row = 1 column = 0
 ---->
neighbour_processes[UP] = 0
neighbour_processes[DOWN] = -1
neighbour_processes[LEFT] =-1
neighbour_processes[RIGHT]=3

Process = 1 row = 0 column = 1
 ---->
neighbour_processes[UP] = -1
neighbour_processes[DOWN] = 3
neighbour_processes[LEFT] =0
neighbour_processes[RIGHT]=-1

Process = 3 row = 1 column = 1
 ---->
neighbour_processes[UP] = 1
neighbour_processes[DOWN] = -1
neighbour_processes[LEFT] =2
neighbour_processes[RIGHT]=-1

There's more...
To obtain a toroidal topology of the size M×N, let's use comm.Create_cart again, but, this
time, let's set the periods parameter to periods=(True,True):

cartesian_communicator = comm.Create_cart((grid_row, grid_column),\
 periods=(True, True), reorder=True)

The following output is obtained:

C:\>mpiexec -n 4 python virtualTopology.py
Process = 3 row = 1 column = 1
---->
neighbour_processes[UP] = 1

Message Passing Chapter 4

[151]

neighbour_processes[DOWN] = 1
neighbour_processes[LEFT] =2
neighbour_processes[RIGHT]=2

Process = 1 row = 0 column = 1
---->
neighbour_processes[UP] = 3
neighbour_processes[DOWN] = 3
neighbour_processes[LEFT] =0
neighbour_processes[RIGHT]=0

Building a 2 x 2 grid topology:
Process = 0 row = 0 column = 0
---->
neighbour_processes[UP] = 2
neighbour_processes[DOWN] = 2
neighbour_processes[LEFT] =1
neighbour_processes[RIGHT]=1

Process = 2 row = 1 column = 0
---->
neighbour_processes[UP] = 0
neighbour_processes[DOWN] = 0
neighbour_processes[LEFT] =3
neighbour_processes[RIGHT]=3

The output covers the topology represented here:

The virtual toroidal 2x2 topology

Message Passing Chapter 4

[152]

The topology represented in the previous diagram indicates that the P0 process is chained
to the P1 (RIGHT and LEFT) and P2 (UP and DOWN) processes, the P1 process is chained to
the P3 (UP and DOWN) and P0 (RIGHT and LEFT) processes, the P3 process is chained to the
P1 (UP and DOWN) and P2 (RIGHT and LEFT) processes, and the P2 process is chained to the
P3 (LEFT and RIGHT) and P0 (UP and DOWN) processes.

See also
More information on MPI can be found at http:/ /pages. tacc. utexas. edu/~eijkhout/
pcse/html/mpi-topo. html.

http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html
http://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-topo.html

5
Asynchronous Programming

Beside the sequential and parallel execution models, there is a third model that is of
fundamental importance together with the concept of event programming: the asynchronous
model.

The execution model of asynchronous tasks can be implemented through a single main
control flow, both in single-processor systems and in multiprocessor systems. In
the concurrent asynchronous execution model, the executions of various tasks intersect
along the timeline, and everything happens under the action of a single flow of control
(single-threaded). Once started, the execution of tasks can be suspended and then resumed
over time, alternating with the execution of other current tasks that are present.

The development of code for the asynchronous model is completely different from that for
multithreaded programming. A substantial difference between the concurrent
multithreaded parallel model and the single-threaded concurrent asynchronous model lies
in the fact that, in the first case, the OS decides on the timeline if we suspend the activity of
one thread and start another.

This remains outside the control of the coder, unlike the asynchronous model. The
execution or termination of a task continues as long as it is explicitly required.

The most important feature of this type of programming is that the code is not performed
on multiple threads, as in the classic concurrent programming, but on a single thread. Thus,
it is not at all true that two tasks are executed at the same time, but, according to this
approach, they are performed at almost the same time.

In particular, we will describe the asyncio Python module, which was introduced in
Python 3.4. This allows us to use coroutines and futures to make writing asynchronous
code easier and to make it more readable.

Asynchronous Programming Chapter 5

[154]

In this chapter, we will cover the following recipes:

Using the concurrent.futures Python module
Managing the event loop with asyncio
Handling coroutines with asyncio
Manipulating tasks with asyncio
Dealing with asyncio and futures

Using the concurrent.futures Python module
The concurrent.futures module, which is part of the standard Python library, provides
a level of abstraction on threads by modelling them as asynchronous functions.

This module is built by two main classes:

concurrent.futures.Executor: This is an abstract class that provides
methods to execute calls asynchronously.
concurrent.futures.Future: This encapsulates the asynchronous execution
of a callable. Future objects are instantiated by submitting tasks (functions with
optional parameters) to Executors.

Here are some of the main methods of the module:

submit(function,argument): This schedules the execution of the callable
function on the arguments.
map(function,argument): This executes the functions of arguments in
asynchronous mode.
shutdown(Wait=True): This signals the executor to free any resource.

The executors are accessed through their subclasses: ThreadPoolExecutor or
ProcessPoolExecutor. Because the instantiation of threads and processes is a resource-
demanding task, it is better to pool these resources and use them as repeatable launchers or
executors (hence the Executors concept) for parallel or concurrent tasks.

The approach we are taking here involves using a pool executor. We will submit the assets
to the pool (thread and process) and get the futures, which are the results that will be
available to us in the future. Of course, we can wait for all futures to become real results.

Asynchronous Programming Chapter 5

[155]

A thread or process pool (also called pooling) indicates a management software that is being
used to optimize and simplify the use of threads and/or processes within a program.
Through pooling, you can submit the task (or tasks) in order to execute them to the pooler.

The pool is equipped with an internal queue of tasks pending and several threads or
processes that execute them. A recurring concept in pooling is reusing: a thread (or process)
is used several times for different tasks during its life cycle. This decreases the overhead of
creating new threads or processes and increases the performance of the program.

Reuse is not a rule, but it is one of the main reasons that lead a coder to use pooling in their
application.

Getting ready
The concurrent.futures module provides two subclasses of the Executor class, which
asynchronously manipulate a pool of threads and a pool of processes. The two subclasses
are as follows:

concurrent.futures.ThreadPoolExecutor(max_workers)

concurrent.futures.ProcessPoolExecutor(max_workers)

The max_workers parameter identifies the maximum number of workers that execute the
call asynchronously.

How to do it...
Here is an example of thread and process pool usage, where we will compare the execution
time with the time it takes for sequential execution.

The task to be performed is as follows: we have a list of 10 elements. Each element of the list
is made to count up to 100,000,000 (just to waste time), and then the last number is
multiplied by the i-th element of the list. In particular, we are evaluating the following
cases:

Sequential execution
Thread pool with five workers
Process pool with five workers

Asynchronous Programming Chapter 5

[156]

Now, let's look at how to do it:

Import the relevant libraries:1.

import concurrent.futures
import time

Define the list of numbers from 1 to 10:2.

number_list = list(range(1, 11))

The count(number) function counts the numbers from 1 to 100000000, and3.
then returns the product of number × 100,000,000:

def count(number):
 for i in range(0,100000000):
 i += 1
 return i*number

The evaluate(item) function evaluates the count function on the item4.
parameter. It prints out the item value and the result of count(item):

def evaluate(item):
 result_item = count(item)
 print('Item %s, result %s' % (item, result_item))

In __main__, the sequential execution, thread pool, and process pool are5.
executed:

if __name__ == '__main__':

For the sequential execution, the evaluate function is executed for each item of6.
number_list. Then, the execution time is printed out:

 start_time = time.clock()
 for item in number_list:
 evaluate(item)
 print('Sequential Execution in %s seconds' % (time.clock() -\
 start_time))

Asynchronous Programming Chapter 5

[157]

Regarding thread and process pool execution, the same number of workers7.
(max_workers=5) is used. Of course, for both pools, execution times are
displayed:

 start_time = time.clock()
 with concurrent.futures.ThreadPoolExecutor(max_workers=5) as\
 executor:
 for item in number_list:
 executor.submit(evaluate, item)
 print('Thread Pool Execution in %s seconds' % (time.clock() -\
 start_time))
 start_time = time.clock()
 with concurrent.futures.ProcessPoolExecutor(max_workers=5) as\
 executor:
 for item in number_list:
 executor.submit(evaluate, item)
 print('Process Pool Execution in %s seconds' % (time.clock() -\
 start_time))

How it works...
We build a list of numbers stored in number_list:

number_list = list(range(1, 11))

For each element in the list, we operate the counting procedure until we reach 100000000
iterations, and then multiply the resulting value for 100000000:

def count(number) :
 for i in range(0, 100000000):
 i=i+1
 return i*number

def evaluate_item(x):
 result_item = count(x)

In the main program, we execute the same task in sequential mode:

if __name__ == "__main__":
 for item in number_list:
 evaluate_item(item)

Asynchronous Programming Chapter 5

[158]

Then, in parallel mode, use the concurrent.futures pooling capabilities for a
thread pool:

with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
 for item in number_list:
 executor.submit(evaluate, item)

And do the same for a process pool:

with concurrent.futures.ProcessPoolExecutor(max_workers=5) as executor:
 for item in number_list:
 executor.submit(evaluate, item)

Note that both the thread and process pools are set with max_workers=5;
moreover, if max_workers is equal to None, it will default to the number
of processors on the machine.

To run this example, open Command Prompt and, in the same folder where the example is
contained, type the following:

> python concurrent_futures_pooling.py

By executing the preceding example, we can see the execution of the three execution
models with relative times:

Item 1, result 10000000
Item 2, result 20000000
Item 3, result 30000000
Item 4, result 40000000
Item 5, result 50000000
Item 6, result 60000000
Item 7, result 70000000
Item 8, result 80000000
Item 9, result 90000000
Item 10, result 100000000
Sequential Execution in 6.8109448 seconds
Item 2, result 20000000
Item 1, result 10000000
Item 4, result 40000000
Item 5, result 50000000
Item 3, result 30000000
Item 8, result 80000000
Item 7, result 70000000
Item 6, result 60000000
Item 10, result 100000000
Item 9, result 90000000

Asynchronous Programming Chapter 5

[159]

Thread Pool Execution in 6.805766899999999 seconds
Item 1, result 10000000
Item 4, result 40000000
Item 2, result 20000000
Item 3, result 30000000
Item 5, result 50000000
Item 6, result 60000000
Item 7, result 70000000
Item 9, result 90000000
Item 8, result 80000000
Item 10, result 100000000
Process Pool Execution in 4.166398899999999 seconds

It should be noted that although the example is not expensive in computational terms,
sequential and thread pool execution are comparable in terms of time. Using a process pool
gives us the fastest execution time.

The pool then distributes the processes (in this case, five processes) between the available
cores (for this example, a machine with four cores was used) in FIFO (short for first in, first
out) mode.

So, for each core, the assigned process runs in series. Only after the I/O operation is
performed does the pool schedule the execution of another process. Of course, the
execution mechanism is the same if you use a thread pool.

The computational times, which are lower in the case of the process pool, must be traced
back to the fact that I/O operations are not significant. This allows the pool of processes to
be faster because, unlike threads, they do not require any synchronization mechanisms (as
explained in Chapter 1, Getting Started with Parallel Computing and Python, in the Introducing
parallel programming recipe).

There's more...
The pooling technique is widely used in server applications, as it is necessary to manage
multiple simultaneous requests from any number of clients.

Many other applications, however, require that every activity be performed immediately or
that you have more control over the thread that runs it: in this case, pooling is not the best
choice.

Asynchronous Programming Chapter 5

[160]

See also
An interesting tutorial on concurrent.futures can be found here: http:/ /masnun. com/
2016/03/29/python- a-quick- introduction- to- the-concurrent- futures- module. html.

Managing the event loop with asyncio
The asyncio Python module provides facilities for managing events, coroutines, tasks, as
well as threads, and synchronization primitives for writing concurrent code.

The main components of this module are as follows:

Event loop: The asyncio module allows one event loop per process. This is the
entity that deals with managing and distributing the execution of different tasks.
In particular, this registers the tasks and manages them by switching the control
flow from one task to another.
Coroutines: This is a generalization of the concept of the subroutine. Also, a
coroutine can be suspended during execution to wait for external processing
(some routine in I/O) and return from the point it had stopped at when the
external processing is done.
Futures: This defines the Future object exactly like the concurrent.futures
module. It represents a computation that has still not been accomplished.
Tasks: This is a subclass of asyncio that is used to encapsulate and manage
coroutines in a parallel mode.

In this recipe, the focus is on the concept of events and event management (namely, event
loops) within a software program.

Understanding event loops
In computer science, an event is an action intercepted by the program that can be managed
by the program itself. As an example, an event could be the virtual pressure of a key by the
user during interaction with the graphical interface, the pressure of a key on the physical
keyboard, an external interrupt signal, or, more abstractly, the reception of data through the
network. But more generally, any other form of event that has happened that can be
detected and managed in some way.

http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html
http://masnun.com/2016/03/29/python-a-quick-introduction-to-the-concurrent-futures-module.html

Asynchronous Programming Chapter 5

[161]

Within a system, the entity that can generate events is called an event source, while the entity
that deals with handling an event that occurs are an event handler.

The event loop programming construct realizes the functionality of managing events within
a program. More precisely, the event loop acts cyclically during the whole execution of the
program, keeping track of events that have occurred within a data structure to queue and
then process them one at a time by invoking the event handler if the main thread is free.

The pseudocode of the event loop manager is shown here:

while (1) {
 events = getEvents()
 for (e in events)
 processEvent(e)
}

All the events that are fed into the while loop are caught and then processed by the event
handler. The handler that processes an event is the only activity taking place in the system.
When the handler has ended, control passes to the next event scheduled.

asyncio provides the following methods to manage an event loop:

loop = get_event_loop(): This gets the event loop for the current context.
loop.call_later(time_delay,callback,argument): This arranges for the
callback to be called after the given time_delay, in seconds.
loop.call_soon(callback, argument): This arranges for a callback to be
called as soon as possible. The callback is called after call_soon() (https:/ /
docs.python. org/ 3/ library/ asyncio- eventloop. html) returns when control
returns to the event loop.
loop.time(): This returns the current time as a float value (https:/ /docs.
python.org/ 3/ library/ functions. html), according to the event loop's internal
clock.
asyncio.set_event_loop(): This sets the event loop for the current context to
loop.
asyncio.new_event_loop(): This creates and returns a new event loop object
according to this policy's rules.
loop.run_forever(): This runs until stop() (https:/ / docs. python. org/ 3/
library/ asyncio- eventloop. html) is called.

https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html

Asynchronous Programming Chapter 5

[162]

How to do it...
In this example, we look at how to use the event loop statements provided by the
asyncio library, in order to build an application that works in asynchronous mode.

In this example, we defined three tasks. Each task has an execution time determined by a
time random parameter. Once the execution is finished, Task A calls Task B, Task B calls
Task C, and Task C calls Task A.

The event loop will continue until a termination condition is met. As we can imagine, this
example follows this asynchronous schema:

 Asynchronous programming model

Let's have a look at the following steps:

Let's start by importing the libraries needed for our implementation:1.

import asyncio
import time
import random

Then, we define task_A, whose execution time is determined randomly and can2.
vary from 1 to 5 seconds. At the end of the execution, if the termination
condition is not satisfied, then the computation goes to task_B:

def task_A(end_time, loop):
 print ("task_A called")
 time.sleep(random.randint(0, 5))
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, task_B, end_time, loop)
 else:
 loop.stop()

Asynchronous Programming Chapter 5

[163]

Here, task_B is defined. Its execution time is determined randomly and can vary3.
from 4 to 7 seconds. At the end of the execution, if the termination condition is
not satisfied, then the computation goes to task_B:

def task_B(end_time, loop):
 print ("task_B called ")
 time.sleep(random.randint(3, 7))
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, task_C, end_time, loop)
 else:
 loop.stop()

Then, task_C is implemented. Its execution time is determined randomly and4.
can vary from 6 to 10 seconds. At the end of the execution, if the termination
condition is not satisfied, then the computation goes back to task_A:

def task_C(end_time, loop):
 print ("task_C called")
 time.sleep(random.randint(5, 10))
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, task_A, end_time, loop)
 else:
 loop.stop()

The next statement defines the loop parameter, which simply gets the current5.
event loop:

loop = asyncio.get_event_loop()

The end_loop value defines the termination condition. The execution of this6.
example code must last 60 seconds:

end_loop = loop.time() + 60

Then, let's request the execution of task_A:7.

loop.call_soon(task_A, end_loop, loop)

Now, we set a long duration cycle that continues to respond to events until it is8.
stopped:

loop.run_forever()

Now, close the event loop:9.

loop.close()

Asynchronous Programming Chapter 5

[164]

How it works...
In order to manage the execution of the three tasks, task_A, task_B, and task_C, we need
to capture the event loop:

loop = asyncio.get_event_loop()

Then, we schedule the first call to task_A by using the call_soon construct:

end_loop = loop.time() + 60
loop.call_soon(function_1, end_loop, loop)

Let's note the definition of task_A:

def task_A(end_time, loop):
 print ("task_A called")
 time.sleep(random.randint(0, 5))
 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, task_B, end_time, loop)
 else:
 loop.stop()

The asynchronous behavior of the application is determined by the following parameters:

time.sleep(random.randint(0, 5)): This defines the duration time of the
task execution.
end_time: This defines the upper time limit within task_A and makes the call to
task_B through the call_later method.
loop: This is the event loop captured previously with the get_event_loop()
method.

After executing the task, loop.time is compared to end_time. If the execution time is
within the maximum time (60 seconds), then the computation continues by calling task_B,
otherwise, the computation ends, closing the event loop:

 if (loop.time() + 1.0) < end_time:
 loop.call_later(1, task_B, end_time, loop)
 else:
 loop.stop()

For the other two tasks, the operations are practically the same, but only the execution time
and the call to the next task vary.

Asynchronous Programming Chapter 5

[165]

Now, let me summarize the situation:

task_A calls task_B with a random execution time between 1 and 5 seconds.1.
task_B calls task_C with a random execution time between 4 and 7 seconds.2.
task_C calls task_A with a random execution time between 6 and 10 seconds.3.

When the running time expires, the event loop must end:

loop.run_forever()
loop.close()

A possible output of this example would be the following:

task_A called
task_B called
task_C called
task_A called
task_B called
task_C called
task_A called
task_B called
task_C called
task_A called
task_B called
task_C called
task_A called
task_B called
task_C called

There's more...
Asynchronous event programming replaces a type of concurrent programming in which
several parts of the program are executed simultaneously by different threads that have
access to the same data in memory, thus giving rise to the problem of critical runs. At the
same time, it has become essential to be able to exploit the different cores of modern CPUs
because, in certain areas, performance similar to that made available by the latter can no
longer be achieved with a single-core processor.

Asynchronous Programming Chapter 5

[166]

See also
Here is a good introduction to asyncio: https:/ / hackernoon. com/ a-simple-
introduction-to- pythons- asyncio- 595d9c9ecf8c.

Handling coroutines with asyncio
Throughout the various examples presented, we have seen that when a program becomes
very long and complex, it is convenient to divide it into subroutines, each of which
implements a specific task. However, subroutines cannot be executed independently, but
only at the request of the main program, which is responsible for coordinating the use of
subroutines.

In this section, we introduce a generalization of the concept of subroutines, known as
coroutines: just like subroutines, coroutines compute a single computational step, but
unlike subroutines, there is no main program to coordinate the results. The coroutines link
themselves together to form a pipeline without any supervising function responsible for
calling them in a particular order.

In a coroutine, the execution point can be suspended and resumed later, since the coroutine
keeps track of the state of execution. Having a pool of coroutines, it is possible to interleave
the computations: the first one runs until it yields control back, then the second runs and goes
on down the line.

The interleaving is managed by the event loop, which was described in the Managing the
event loop with asyncio recipe. It keeps track of all the coroutines and schedules when they
will be executed.

Other important aspects of coroutines are as follows:

Coroutines allow for multiple entry points that can yield multiple times.
Coroutines can transfer execution to any other coroutine.

The term yield is used here to describe a coroutine pausing and passing the control flow to
another coroutine.

https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c
https://hackernoon.com/a-simple-introduction-to-pythons-asyncio-595d9c9ecf8c

Asynchronous Programming Chapter 5

[167]

Getting ready
We will use the following notation to work with coroutines:

import asyncio

@asyncio.coroutine
def coroutine_function(function_arguments):

 DO_SOMETHING

Coroutines use the yield from syntax introduced in PEP 380 (read more at https:/ / www.
python.org/dev/peps/ pep- 0380/) to stop the execution of the current computation and
suspends the coroutine's internal state.

In particular, in the case of yield from future, the coroutine is suspended until future
is done, then the result of future will be propagated (or raise an exception); in the case of
yield from coroutine, the coroutine waits for another coroutine to produce a result that
will be propagated (or raise an exception).

As we shall see in the next example, in which the coroutines will be used to simulate a finite
state machine, we will use the yield from coroutine notation.

More on coroutines with asyncio are available at https:/ /docs. python.
org/3. 5/ library/ asyncio- task. html.

How to do it...
In this example, we see how to use coroutines to simulate a finite state machine with five
states.

A finite state machine or finite state automaton is a mathematical model that is widely
used in engineering disciplines, but also in sciences such as mathematics and computer
science.

https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://www.python.org/dev/peps/pep-0380/
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html
https://docs.python.org/3.5/library/asyncio-task.html

Asynchronous Programming Chapter 5

[168]

The automaton that we want to simulate the behavior of using coroutines is as follows:

 Finite-state machine

The states of the system are S0, S1, S2, S3, and S4, with 0 and 1: the values for which the
automaton can pass from one state to the next state (this operation is called a transition). So,
for example, state S0 can pass to state S1, but only for the value 1, and S0 can pass to state
S2, but only for the value 0.

The following Python code simulates a transition of the automaton from state S0 (the start
state), up to state S4 (the end state):

The first step is obviously to import the relevant libraries:1.

import asyncio
import time
from random import randint

Asynchronous Programming Chapter 5

[169]

Then, we define the coroutine relative to start_state. The input_value2.
parameter is evaluated randomly; it can be 0 or 1. If it is 0, then the control goes
to coroutine state2; otherwise, it changes to coroutine state1:

@asyncio.coroutine
def start_state():
 print('Start State called\n')
 input_value = randint(0, 1)
 time.sleep(1)
 if input_value == 0:
 result = yield from state2(input_value)
 else:
 result = yield from state1(input_value)
 print('Resume of the Transition:\nStart State calling'+ result)

Here is the coroutine for state1. The input_value parameter is evaluated3.
randomly; it can be 0 or 1. If it is 0, then the control goes to state2; otherwise, it
changes to state1:

@asyncio.coroutine
def state1(transition_value):
 output_value ='State 1 with transition value = %s\n'% \
 transition_value
 input_value = randint(0, 1)
 time.sleep(1)
 print('...evaluating...')
 if input_value == 0:
 result = yield from state3(input_value)
 else:
 result = yield from state2(input_value)
 return output_value + 'State 1 calling %s' % result

The coroutine for state1 has the transition_value argument that allowed4.
the passage of the state. Also, in this case, input_value is randomly evaluated.
If it is 0, then the state transitions to state3; otherwise, the control changes to
state2:

@asyncio.coroutine
def state2(transition_value):
 output_value = 'State 2 with transition value = %s\n' %\
 transition_value
 input_value = randint(0, 1)
 time.sleep(1)
 print('...evaluating...')
 if input_value == 0:
 result = yield from state1(input_value)

Asynchronous Programming Chapter 5

[170]

 else:
 result = yield from state3(input_value)
 return output_value + 'State 2 calling %s' % result

The coroutine for state3 has the transition_value argument, which allowed5.
the passage of the state. input_value is randomly evaluated. If it is 0, then the
state transitions to state1; otherwise, the control changes to end_state:

@asyncio.coroutine
def state3(transition_value):
 output_value = 'State 3 with transition value = %s\n' %\
 transition_value
 input_value = randint(0, 1)
 time.sleep(1)
 print('...evaluating...')
 if input_value == 0:
 result = yield from state1(input_value)
 else:
 result = yield from end_state(input_value)
 return output_value + 'State 3 calling %s' % result

end_state prints out the transition_value argument, which allowed the6.
passage of the state, and then stops the computation:

@asyncio.coroutine
def end_state(transition_value):
 output_value = 'End State with transition value = %s\n'%\
 transition_value
 print('...stop computation...')
 return output_value

In the __main__ function, the event loop is acquired, and then we start the7.
simulation of the finite state machine, calling the automaton's start_state:

if __name__ == '__main__':
 print('Finite State Machine simulation with Asyncio Coroutine')
 loop = asyncio.get_event_loop()
 loop.run_until_complete(start_state())

Asynchronous Programming Chapter 5

[171]

How it works...
Each state of the automaton has been defined by using the decorator:

 @asyncio.coroutine

For example, state S0 is defined here:

@asyncio.coroutine
def StartState():
 print ("Start State called \n")
 input_value = randint(0,1)
 time.sleep(1)
 if (input_value == 0):
 result = yield from State2(input_value)
 else :
 result = yield from State1(input_value)

The transition to the next state is determined by input_value, which is defined by the
randint (0,1) function of Python's random module. This function randomly provides a
value of 0 or 1.

In this manner, randint randomly determines the state to which the finite state machine
will pass:

input_value = randint(0,1)

After determining the values to pass, the coroutine calls the next coroutine using the yield
from command:

if (input_value == 0):
 result = yield from State2(input_value)
 else :
 result = yield from State1(input_value)

The result variable is the value that each coroutine returns. It is a string, and, at the end of
the computation, we can reconstruct the transition from the initial state of the
automaton, start_state, up to end_state.

The main program starts the evaluation inside the event loop:

if __name__ == "__main__":
 print("Finite State Machine simulation with Asyncio Coroutine")
 loop = asyncio.get_event_loop()
 loop.run_until_complete(StartState())

Asynchronous Programming Chapter 5

[172]

Running the code, we have an output like this:

Finite State Machine simulation with Asyncio Coroutine
Start State called
...evaluating...
...evaluating...
...evaluating...
...evaluating...
...stop computation...
Resume of the Transition :
Start State calling State 1 with transition value = 1
State 1 calling State 2 with transition value = 1
State 2 calling State 1 with transition value = 0
State 1 calling State 3 with transition value = 0
State 3 calling End State with transition value = 1

There's more...
Before Python 3.5 was released, the asyncio module used generators to mimic
asynchronous calls and, therefore, had a different syntax than the current version of Python
3.5.

Python 3.5 introduced the async and await keywords. Notice the lack of parentheses
around the await func() call.

The following is an example of "Hello, world!", using asyncio with the new syntax
introduced by Python 3.5+:

import asyncio

async def main():
 print(await func())

async def func():
 # Do time intensive stuff...
 return "Hello, world!"

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())

Asynchronous Programming Chapter 5

[173]

See also
Coroutines in Python are well described here: https:/ /www. geeksforgeeks. org/
coroutine-in-python/ .

Manipulating tasks with asyncio
The asyncio module is designed to handle asynchronous processes and concurrent task
execution over an event loop. It also provides the asyncio.Task() class for the purpose of
wrapping coroutines in a task (https:/ / docs.python. org/ 3/library/ asyncio- task. html).
Its use is to allow independently running tasks to run concurrently with other tasks over
the same event loop.

When a coroutine is wrapped in a task, it connects Task to the event loop and then runs
automatically when the loop is started, thus providing a mechanism for automatically
driving the coroutine.

The asyncio module provides the asyncio.Task(coroutine) method to handle
computations with tasks; moreover, asyncio.Task(coroutine) schedules the execution
of a coroutine (https:/ /docs. python. org/3/ library/ asyncio- task. html).

A task is responsible for executing a coroutine object in an event loop.

If the wrapped coroutine uses the yields from future notation, as already described in
the Handling coroutines with asyncio section, then the task suspends the execution of the
wrapped coroutine and awaits completion of the future.

When the future is done, the execution of the wrapped coroutine restarts with the result or
the exception of the future. Also, we must note that an event loop only runs one task at a
time. Other tasks may run in parallel if other event loops are running in different threads.

While a task waits for the completion of a future, the event loop executes a new task.

https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://www.geeksforgeeks.org/coroutine-in-python/
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html

Asynchronous Programming Chapter 5

[174]

How to do it...
In this example, we show how three mathematical functions can be executed concurrently
by the asyncio.Task() statement:

Of course, let's start by importing the asyncio library:1.

import asyncio

In the first coroutine, the factorial function is defined:2.

@asyncio.coroutine
def factorial(number):
 f = 1
 for i in range(2, number + 1):
 print("Asyncio.Task: Compute factorial(%s)" % (i))
 yield from asyncio.sleep(1)
 f *= i
 print("Asyncio.Task - factorial(%s) = %s" % (number, f))

After which, the second function is defined—the fibonacci function:3.

@asyncio.coroutine
def fibonacci(number):
 a, b = 0, 1
 for i in range(number):
 print("Asyncio.Task: Compute fibonacci (%s)" % (i))
 yield from asyncio.sleep(1)
 a, b = b, a + b
 print("Asyncio.Task - fibonacci(%s) = %s" % (number, a))

The last function to be executed concurrently is the binomial coefficient:4.

@asyncio.coroutine
def binomial_coefficient(n, k):
 result = 1
 for i in range(1, k + 1):
 result = result * (n - i + 1) / i
 print("Asyncio.Task: Compute binomial_coefficient (%s)" %
 (i))
 yield from asyncio.sleep(1)
 print("Asyncio.Task - binomial_coefficient(%s , %s) = %s" %
 (n,k,result))

Asynchronous Programming Chapter 5

[175]

In the __main__ function, task_list contains the functions that must be5.
performed in parallel using the asyncio.Task function:

if __name__ == '__main__':
 task_list = [asyncio.Task(factorial(10)),
 asyncio.Task(fibonacci(10)),
 asyncio.Task(binomial_coefficient(20, 10))]

Finally, we acquire the event loop and start the computation:6.

 loop = asyncio.get_event_loop()
 loop.run_until_complete(asyncio.wait(task_list))
 loop.close()

How it works...
Each coroutine is defined by the @asyncio.coroutine annotation (called the decorator):

@asyncio.coroutine
def function (args):
 do something

To run in parallel, each function is an argument of the asyncio.Task module, and
therefore, they are included in task_list:

if __name__ == '__main__':
 task_list = [asyncio.Task(factorial(10)),
 asyncio.Task(fibonacci(10)),
 asyncio.Task(binomial_coefficient(20, 10))]

Then, we get the event loop:

 loop = asyncio.get_event_loop()

Finally, we add the execution of task_list to the event loop:

 loop.run_until_complete(asyncio.wait(task_list))
 loop.close()

Note that the asyncio.wait(task_list) statement waits for the
given coroutines to complete.

Asynchronous Programming Chapter 5

[176]

The output for the preceding code looks like this:

Asyncio.Task: Compute factorial(2)
Asyncio.Task: Compute fibonacci(0)
Asyncio.Task: Compute binomial_coefficient(1)
Asyncio.Task: Compute factorial(3)
Asyncio.Task: Compute fibonacci(1)
Asyncio.Task: Compute binomial_coefficient(2)
Asyncio.Task: Compute factorial(4)
Asyncio.Task: Compute fibonacci(2)
Asyncio.Task: Compute binomial_coefficient(3)
Asyncio.Task: Compute factorial(5)
Asyncio.Task: Compute fibonacci(3)
Asyncio.Task: Compute binomial_coefficient(4)
Asyncio.Task: Compute factorial(6)
Asyncio.Task: Compute fibonacci(4)
Asyncio.Task: Compute binomial_coefficient(5)
Asyncio.Task: Compute factorial(7)
Asyncio.Task: Compute fibonacci(5)
Asyncio.Task: Compute binomial_coefficient(6)
Asyncio.Task: Compute factorial(8)
Asyncio.Task: Compute fibonacci(6)
Asyncio.Task: Compute binomial_coefficient(7)
Asyncio.Task: Compute factorial(9)
Asyncio.Task: Compute fibonacci(7)
Asyncio.Task: Compute binomial_coefficient(8)
Asyncio.Task: Compute factorial(10)
Asyncio.Task: Compute fibonacci(8)
Asyncio.Task: Compute binomial_coefficient(9)
Asyncio.Task - factorial(10) = 3628800
Asyncio.Task: Compute fibonacci(9)
Asyncio.Task: Compute binomial_coefficient(10)
Asyncio.Task - fibonacci(10) = 55
Asyncio.Task - binomial_coefficient(20, 10) = 184756.0

There's more...
asyncio provides other ways to schedule tasks using the ensure_future() or
AbstractEventLoop.create_task() methods, which both accept a coroutine object.

Asynchronous Programming Chapter 5

[177]

See also
More on asyncio and tasks can be found here: https:/ /tutorialedge. net/ python/
concurrency/asyncio- tasks- tutorial/ .

Dealing with asyncio and futures
Another key component of the asyncio module is the asyncio.Future class. It is very
similar to concurrent.Futures, but, of course, it is adapted to the main mechanism of
asyncio: the event loop.

The asyncio.Future class represents a result (but can also be an exception) that is not yet
available.

Hence, it represents an abstraction of something that is yet to be achieved. The callbacks
that have to process any results are, in fact, added to instances of this class.

Getting ready
To define a future object, the following syntax must be used:

future = asyncio.Future

The main methods to manage this object are the following:

cancel(): This cancels the future object and schedules callbacks.
result(): This returns the result that this future represents.
exception(): This returns the exception that was set on this future.
add_done_callback(fn): This adds a callback to be run when future is done.
remove_done_callback(fn): This removes all instances of a callback from the
call when done.
set_result(result): This marks future as done and sets its result.
set_exception(exception): This marks future as done and sets an
exception.

https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/
https://tutorialedge.net/python/concurrency/asyncio-tasks-tutorial/

Asynchronous Programming Chapter 5

[178]

How to do it...
The following example shows how to use the asyncio.Future class for the management
of two coroutines: first_coroutine and second_coroutine, which perform the
following tasks. first_coroutine performs the sum of the first N integers, and
second_coroutine performs the factorial of N:

Now, let's import the relevant libraries:1.

import asyncio
import sys

first_coroutine implements the sum function of the first N integers:2.

@asyncio.coroutine
def first_coroutine(future, num):
 count = 0
 for i in range(1, num + 1):
 count += i
 yield from asyncio.sleep(1)
 future.set_result('First coroutine (sum of N integers)\
 result = %s' % count)

In second_coroutine, we still implement the factorial function:3.

@asyncio.coroutine
def second_coroutine(future, num):
 count = 1
 for i in range(2, num + 1):
 count *= i
 yield from asyncio.sleep(2)
 future.set_result('Second coroutine (factorial) result = %s' %\
 count)

Using the got_result function, we print the output of the computation:4.

def got_result(future):
 print(future.result())

In the main function, the num1 and num2 parameters must be set by the user.5.
They will be used as parameters for the functions implemented by the first and
second coroutines:

if __name__ == "__main__":
 num1 = int(sys.argv[1])
 num2 = int(sys.argv[2])

Asynchronous Programming Chapter 5

[179]

Now, let's take the event loop:6.

 loop = asyncio.get_event_loop()

Here, the futures are defined by the asyncio.future function:7.

 future1 = asyncio.Future()
 future2 = asyncio.Future()

The two coroutines—first_couroutine and second_couroutine—included8.
in the tasks list have the future1 and future2 futures, the user-defined
arguments, and the num1 and num2 parameters:

tasks = [first_coroutine(future1, num1),
 second_coroutine(future2, num2)]

The futures have added a callback:9.

 future1.add_done_callback(got_result)
 future2.add_done_callback(got_result)

Then, the tasks list is added to the event loop, so that the computation can10.
begin:

 loop.run_until_complete(asyncio.wait(tasks))
 loop.close()

How it works...
In the main program, we define the future objects, future1 and future2 respectively,
using via the asyncio.Future() directive:

if __name__ == "__main__":
 future1 = asyncio.Future()
 future2 = asyncio.Future()

In defining the tasks, we pass the future objects as an argument of the two coroutines
first_couroutine and second_couroutine:

tasks = [first_coroutine(future1,num1),
 second_coroutine(future2,num2)]

Asynchronous Programming Chapter 5

[180]

Finally, we add a callback to be run when future is done:

future1.add_done_callback(got_result)
future2.add_done_callback(got_result)

Here, got_result is a function that prints the result of future:

def got_result(future):
 print(future.result())

In the coroutine, we pass the future object as an argument. After the computation, we set
sleep times of 3 seconds for the first coroutine and 4 seconds for the second one:

yield from asyncio.sleep(sleep_time)

The following output is obtained by executing the command with different values:

> python asyncio_and_futures.py 1 1
First coroutine (sum of N integers) result = 1
Second coroutine (factorial) result = 1

> python asyncio_and_futures.py 2 2
First coroutine (sum of N integers) result = 2
Second coroutine (factorial) result = 2

> python asyncio_and_futures.py 3 3
First coroutine (sum of N integers) result = 6
Second coroutine (factorial) result = 6

> python asyncio_and_futures.py 5 5
First coroutine (sum of N integers) result = 15
Second coroutine (factorial) result = 120

> python asyncio_and_futures.py 50 50
First coroutine (sum of N integers) result = 1275
Second coroutine (factorial) result =
30414093201713378043612608166064768844377641568960512000000000000
First coroutine (sum of N integers) result = 1275

Asynchronous Programming Chapter 5

[181]

There's more...
We can invert the output results, that is, have the output of second_coroutine first, by
simply swapping the sleep time between the coroutines: yield from
asyncio.sleep(2) in the first_coroutine definition, and yield from
asyncio.sleep(1) in the second_coroutine definition. This can be shown by the
following example:

> python asyncio_and_future.py 1 10
second coroutine (factorial) result = 3628800
first coroutine (sum of N integers) result = 1

See also
More examples of asyncio and futures can be found at https:/ /www. programcreek. com/
python/example/102763/ asyncio. futures.

https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures
https://www.programcreek.com/python/example/102763/asyncio.futures

6
Distributed Python

This chapter will introduce some important Python modules for distributed computing. In
particular, we will describe the socket module, which allows you to implement simple
applications distributed through the client-server model.

Then, we will introduce the Celery module, which is a powerful Python framework that is
used to manage distributed tasks. Finally, we will describe the Pyro4 module, which
allows you to call methods that are used in different processes, potentially on a different
machine.

In this chapter, we will cover the following recipes:

Introducing distributed computing
Using the Python socket module
Distributed task management with Celery
Remote Method Invocation (RMI) with Pyro4

Introducing distributed computing
Parallel and distributed computing are similar technologies designed to increase the amount
of processing power available for a specific task. Generally, these methods are used to solve
problems that require large computational capabilities.

When the problem is divided into many small pieces, individual sections of the problem
can be calculated by many processors simultaneously. This allows more processing power
to be exercised on the problem than can be provided by a single processor.

The main difference between parallel and distributed processing is that parallel
configurations include many processors within a single system, while distributed
configurations exploit the processing power of many computers simultaneously.

Distributed Python Chapter 6

[183]

Let's look at the other differences:

Parallel processing Distributed processing
Parallel processing has the advantage
of providing reliable processing power
with a very low degree of latency.

Distributed processing is not extremely efficient on a processor-
by-processor basis, as the data must travel over the network
rather than through the internal connections of a single system.

By concentrating all the processing
power in one system, speed loss due to
data transfer is minimized.

Each processor will contribute much less processing power than
any processor in a parallel system since data transfer creates a
bottleneck that limits processing power.

The only real limit is the number of
processors incorporated in the system.

The system is almost infinitely scalable since there is no actual
upper limit to the number of processors in a distributed system.

However, in the context of computer applications, it is customary to distinguish between
local and distributed architectures:

Local architectures Distributed architectures
All the components are on the same
machine.

Applications and components can reside on different nodes that
are connected by a network.

The advantages of using distributed computing consist mainly of the possibility of
concurrent use of the programs, the centralization of the data, and the distribution of the
processing load, which all come at the price of greater complexity, especially with
communication between the various components.

Types of distributed applications
Distributed applications can be classified according to the degree of distribution:

Client-server applications
Multi-level applications

Client-server applications
There are only two levels and the operations are carried out entirely on the server. As an
example, we can mention the classic static or dynamic websites. The tools for the realization
of these types of applications are the network sockets, whose programming is possible in
various languages, including C, C ++, Java, and, of course, Python.

Distributed Python Chapter 6

[184]

The term client-server system refers to a network architecture in which a client computer or
client terminal is generally connected to a server for the use of a certain service; for
example, the sharing of a certain hardware/software resource with other clients, or relying
on the underlying protocol architecture.

Client-server architecture
The client-server architecture is a system that realizes a distribution of both processing and
data. The central element of the architecture is the server. The server can be considered both
from a logical point of view and from a physical point of view. From the physical point of
view—hardware—a server is a machine dedicated to running a software server.

From a logical point of view, a server is software. The server, as a logical process, provides
services to other processes that take on the role of requester or client. Generally, the server
does not send the results to the requester until the results are requested by the client.

A feature that distinguishes the client from its server is that the client can initiate a
transaction with the server, while the server can never initiate a transaction with the client
on its own initiative:

Client-server architecture

In fact, the specific tasks of the client are to start transactions, request specific services,
notify the completion of the service, and receive results from the server, as shown in the
preceding diagram.

Distributed Python Chapter 6

[185]

Client-server communications
Communication between clients and servers can take place using a variety of
mechanisms—from geographic to local networks, up to communication services—between
applications at the OS level. Furthermore, a client-server architecture must be independent
of the physical connection method that exists between the client and the server.

It should also be noted that it is not necessary for a client-server process to reside on
physically separate systems. In fact, the server process and the client process can reside on
the same computing platform.

The main objective of the client-server architecture, in the context of data management, is to
allow client applications to access data managed by the servers. The server (understood in a
logical sense as software) is often running on a remote system (for example, in another city
or on a local network).

Therefore, client-server applications are often associated with distributed processing.

TCP/IP client-server architecture
The TCP/IP connection establishes a point-to-point connection between two applications.
The extremes of this connection are marked by an IP address, which identifies the
workstation by a port number, which makes it possible to have several connections that are
connected to independent applications on the same workstation.

Once the connection is established and the protocol can exchange data over it, the
underlying TCP/IP protocol takes care of sending this data, divided into packets, from one
end of the connection to the other. In particular, the TCP protocol deals with assembling
and disassembling the packets, as well as managing the handshaking that guarantees the
reliability of the connection, while the IP protocol takes care of transporting the individual
packets and the choice of the best routing of the packets along with the network.

This mechanism underlies the robustness of the TCP/IP protocol, which, in turn, represents
one of the reasons for the development of the protocol itself in the military sphere
(ARPANET).

Distributed Python Chapter 6

[186]

The various existing standard applications (such as web browsing, file transfer, and email)
use standardized application protocols, such as HTTP, FTP, POP3, IMAP, and SMTP.

Each specific client-server application must instead define and apply its own proprietary
application protocol. This can involve the exchange of data in blocks of a fixed size (which
is the simplest solution).

Multi-level applications
There are a greater number of levels that enable the processing load of the servers to be
alleviated. Those that are, in fact, subdivided are the functionalities of the server-side,
leaving the characteristics of the client part that has the task of hosting the application
interface largely unchanged. An example of this type of architecture is that of the three-tier
model, having a structure divided into three layers or levels:

Frontend or presentation tier or interface
Middle tier or application logic
Backend or data tier or persistent data management

This nomenclature is typical of web applications. More generally, it is possible to refer to a
subdivision in three levels that are applicable to any software application, which is the
following:

 Presentation Layer (PL): This is the visualization part of the data (such as
modules and controls of input) necessary for the user interface.
 Business Logic Layer (BLL): This is the main part of the application, which
defines the various entities and their relationships independently of the methods
of presentation available to the user and saved in the archives.
Data Access Layer (DAL): This contains everything necessary for the
management of persistent data (essentially, database management systems).

This chapter will present some of the solutions proposed by Python for the implementation
of distributed architectures. We will begin by describing the socket module with which
we will implement some examples of the fundamental client-server model.

Distributed Python Chapter 6

[187]

Using the Python socket module
A socket is a software object that allows data to be sent and received between remote hosts
(via a network) or between local processes, such as Inter-Process Communication (IPC).

Sockets were invented at Berkeley as part of the BSD Unix project. They are based precisely
on the management model of input and output of Unix files. In fact, the operations of
opening, reading, writing, and closing a socket occur in the same way as the management
of Unix files, but with the difference that should be considered are the useful parameters for
communication, such as addresses, port numbers, and protocols.

The success and spread of socket technology have gone hand in hand with the
development of the internet. In fact, the combination of sockets with the internet has made
communication between machines that are of any type, and/or are scattered throughout the
world, incredibly easy (at least when compared with other systems).

Getting ready
The socket Python module exposes low-level C APIs for communication over a network
using the BSD (short for Berkeley Software Distribution) socket interface.

This module includes the Socket class, which includes the main methods for managing the
following tasks:

socket ([family [, type [, protocol]]]): Builds a socket using the
following as arguments:

The family address, which can be AF_INET
(default), AF_INET6, or AF_UNIX
The type socket, which can be SOCK_STREAM
(default), SOCK_DGRAM, or perhaps one of the
other "SOCK_" constants
The protocol number (that is usually zero)

gethostname(): Returns the current IP address of the machine.
accept (): Returns the following pair of values (conn and address), where
conn is a socket type object (to send/receive data on the connection), while
address is the address connected to the socket on the other end of the
connection.
bind (address): Associates the socket with the address server.

Distributed Python Chapter 6

[188]

This method historically accepted a couple of parameters for the AF_INET
addresses instead of a single tuple.

close (): Provides the option to clean up the connection once communication
with the client is finished. The sockets are closed and collected by the garbage
collector.
connect (address): Connects a remote socket to an address. The address
format depends on the family address.

How to do it...
In the following example, the server is listening on a default port, and by following a
TCP/IP connection, the client sends to the server the date and time that the connection was
established.

Here is the server implementation for server.py:

Import the relevant Python modules:1.

import socket
import time

Create a new socket using the given address, socket type, and protocol number:2.

serversocket=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

Get the local machine name (host):3.

host=socket.gethostname()

Set the port number:4.

port=9999

Connect (bind) the socket to host and to port:5.

serversocket.bind((host,port))

Distributed Python Chapter 6

[189]

Listen for connections made to the socket. The argument of 5 specifies the6.
maximum number of connections in the queue. The maximum value depends on
the system (usually, it is 5) and the minimum value is always 0:

serversocket.listen(5)

Establish a connection:7.

while True:

Then, the connection is accepted. The return value is a pair (conn, address),8.
where conn is a new socket object that is used to send and receive data, and
address is the address linked to the socket. Once accepted, a new socket is
created and it will have its own identifier. This new socket is only used with this
particular client:

clientsocket,addr=serversocket.accept()

The address and the port that is connected are printed out:9.

print ("Connected with[addr],[port]%s"%str(addr))

currentTime is evaluated:10.

currentTime=time.ctime(time.time())+"\r\n"

The following statement sends data to the socket, returning the number of bytes11.
sent:

clientsocket.send(currentTime.encode('ascii'))

The following statement indicates the socket closure (that is, the communication12.
channel); all subsequent operations on the socket will fail. The sockets are
automatically closed when they are rejected, but it is always recommended to
close them with the close() operation:

clientsocket.close()

Distributed Python Chapter 6

[190]

The code for the client (client.py) is as follows:

Import the socket library:1.

import socket

The socket object is then created:2.

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

Get the local machine name (host):3.

host=socket.gethostname()

Set the port number:4.

port=9999

Set up the connection to host and port:5.

s.connect((host,port))

The maximum number of bytes that can be received is no more than 1,024
bytes: (tm=s.recv(1024)).

Now, close the connection and finally print out the connection time to the server:6.

s.close()
print ("Time connection server:%s"%tm.decode('ascii'))

How it works...
Clients and servers create their respective sockets, and the server listens to them on a port.
The client makes a connection request to the server. It should be noted that we can have
two different port numbers because one could only be dedicated to outgoing traffic, and the
other could only be dedicated to entry. This depends on the host configuration.

Essentially, the client's local port does not necessarily coincide with the server's remote
port. The server receives the request and, if accepted, a new connection is created. Now, the
client and server communicate through a virtual channel, between the socket and the
server, which is created specifically for the data flow of the data socket connection.

Distributed Python Chapter 6

[191]

Consistent with what was mentioned in the first phase, the server creates the data socket
because the first one is used exclusively for managing requests. Therefore, it is possible that
there are many clients communicating with the server using the data socket created by the
server for them. The TCP protocol is connection-oriented, which means that when there is
no longer a need to communicate, the client communicates this to the server and the
connection is closed.

To run the example, execute the server:

C:\>python server.py

Then, execute the client (in a different Windows terminal):

C:\>python client.py

The result on the client side should report the address (addr) and report port as
connected:

Connected with[addr],[port]('192.168.178.11', 58753)

However, on the server side, the result should be as follows:

Time connection server:Sun Mar 31 20:59:38 2019

There's more...
With a small change to the previous code, we can create a simple client-server application
for file transfer. The server instantiates the socket and waits for the connection instance
from the client. Once connected to the server, the client starts the data transfer.

The data to be transferred, which is in the mytext.txt file, is copied byte by byte and sent
to the server through the call to the conn.send function. The server then receives the data
and writes it to a second file, received.txt.

The source code for client2.py is as follows:

import socket
s =socket.socket()
host=socket.gethostname()
port=60000
s.connect((host,port))
s.send('HelloServer!'.encode())
with open('received.txt','wb') as f:
 print ('file opened')
 while True :

Distributed Python Chapter 6

[192]

 print ('receiving data...')
 data=s.recv(1024)
 if not data:
 break
 print ('Data=>',data.decode())
 f.write(data)
f.close()
print ('Successfully get the file')
s.close()
print ('connection closed')

Here is the source code for client.py:

import socket
port=60000
s =socket.socket()
host=socket.gethostname()
s.bind((host,port))
s.listen(15)
print('Server listening....')
while True :
 conn,addr=s.accept()
 print ('Got connection from',addr)
 data=conn.recv(1024)
 print ('Server received',repr(data.decode()))
 filename='mytext.txt'
 f =open(filename,'rb')
 l =f.read(1024)
 while True:
 conn.send(l)
 print ('Sent',repr(l.decode()))
 l =f.read(1024)
 f.close()
 print ('Done sending')
 conn.send('->Thank you for connecting'.encode())
 conn.close()

Distributed Python Chapter 6

[193]

Types of sockets
We can distinguish between the following three types of sockets, which are characterized
by connection modes:

Stream sockets: These are connection-oriented sockets, and they are based on
reliable protocols such as TCP or SCTP.
Datagram sockets: These are not connection-oriented (connectionless) sockets,
and are based on the fast but unreliable UDP protocol.
Raw socket (raw IP): The transport level is bypassed, and the header is accessible
at the application level.

Stream sockets
We will see more in particular of this type of socket only. Being based on transport layer
protocols such as TCP, they guarantee a reliable, full-duplex, and connection-oriented
communication, with a variable-length byte stream.

Communication through this socket consists of these phases:

Creation of sockets: Clients and servers create their respective sockets, and the1.
server listens to them on a port. Since the server can create multiple connections
with different clients (but also with the same one), it needs a queue to handle the
various requests.
Connection request: The client requests a connection to the server. Note that we2.
can have different port numbers because one could only be assigned to the
outgoing traffic, and the other only to entry. This depends on the host
configuration. Essentially, the client's local port does not necessarily coincide
with the server's remote port. The server receives the request and, if accepted, a
new connection is created. In the diagram, the port of the client socket is 8080,
while for the socket server, the port is 80.
Communication: Now, the client and server communicate through a virtual3.
channel, between the client's socket, and a new socket (server side), created
specifically for the data flow of this connection: a data socket. As it was
mentioned in the first phase, the server creates the data socket because the first
data socket is used exclusively for managing requests. Therefore, it is possible
that there are many clients communicating with the server, each with the data
socket specifically created by the server for them.
Closure of the connection: Since the TCP is a connection-oriented protocol when4.
there is no longer a need to communicate, the client communicates it to the
server, which deallocates the data socket.

Distributed Python Chapter 6

[194]

The phases of communication through stream sockets are shown in the following diagram:

 Stream socket phases

See also
More information on Python sockets can be found at https:/ /docs. python. org/ 3/howto/
sockets.html.

Distributed task management with Celery
Celery is a Python framework that manages distributed tasks by following the object-
oriented middleware approach. Its main feature is handling many small tasks and
distributing them on many computational nodes. Finally, the result of each task will then be
reworked in order to compose the overall solution.

https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html

Distributed Python Chapter 6

[195]

To use Celery, a message broker is required. This is an independent (from Celery) software
component that has the function of middleware, which is used to send and receive
messages to distributed task workers.

In fact, a message broker—also known as message middleware—deals with the exchange of
messages in a communication network.: the addressing scheme of this type of middleware
is no longer of the point-to-point type, but is message-oriented addressing.

The reference architecture, with which the message broker manages the exchange of
messages, is based on the so-called publish/subscribe paradigm, which is depicted as
follows:

Message broker architecture

Celery supports many types of brokers. However, the more complete ones are RabbitMQ
and Redis.

Distributed Python Chapter 6

[196]

Getting ready
To install Celery, use the pip installer as follows:

C:\>pip install celery

Then, a message broker must be installed. There are several choices available, but for our
example, it is recommended to install RabbitMQ from the following link: http:/ /www.
rabbitmq.com/download. html.

RabbitMQ is a message-oriented middleware that implements the
Advanced Message Queuing Protocol (AMQP). The RabbitMQ server is
written in the Erlang programming language, so in order to install it, you
need to install Erlang after downloading it from http:/ /www. erlang. org/
download. html.

The steps involved are as follows:

To check the celery installation, first start the message broker (for1.
example, RabbitMQ). Then, type the following:

C:\>celery --version

The following output, which indicates the celery version, is as follows:2.

4.2.2 (Windowlicker)

Next, let's learn about how to create and call a task using the celery module.

celery provides the following two methods to perform a call to a task:

apply_async(args[, kwargs[, ...]]): This sends a task message.
delay(*args, **kwargs): This is a shortcut to send a task message, but it does
not support execution options.

The delay method is easier to use because it is called as a regular
function: task.delay(arg1, arg2, kwarg1='x', kwarg2='y').
However, for apply_async, the syntax is task.apply_async
(args=[arg1,arg2] kwargs={'kwarg1':'x','kwarg2': 'y'}).

http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.erlang.org/download.html

Distributed Python Chapter 6

[197]

Windows setup
In order to use Celery in a Windows environment, you must perform the following
procedure:

Go to System Properties | Environment Variables | User or System variables |1.
New.
Set the following values:2.

Variable name: FORKED_BY_MULTIPROCESSING
Variable value: 1

The reason for this setup is because of Celery's dependence on the billiard package
(https://github.com/ celery/ billiard), which uses
the FORKED_BY_MULTIPROCESSING variable.

For more information on Celery's Windows setup, read https:/ / www.distributedpython.
com/2018/08/21/celery- 4- windows/ .

How to do it...
The task here is a sum of two numbers. To perform this easy task, we have to compose
the addTask.py and addTask_main.py script files:

For addTask.py, start to import the Celery framework as follows:1.

from celery import Celery

Then, define the task. In our example, the task is a sum of two numbers:2.

app = Celery('tasks', broker='amqp://guest@localhost//')
@app.task
def add(x, y):
 return x + y

Now, import the addTask.py file that was defined previously into3.
addtask_main.py:

import addTask

Then, call addTask.py to execute the sum of two numbers:4.

if __name__ == '__main__':
 result = addTask.add.delay(5,5)

https://github.com/celery/billiard
https://github.com/celery/billiard
https://github.com/celery/billiard
https://github.com/celery/billiard
https://github.com/celery/billiard
https://github.com/celery/billiard
https://github.com/celery/billiard
https://github.com/celery/billiard
https://github.com/celery/billiard
https://github.com/celery/billiard
https://github.com/celery/billiard
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/
https://www.distributedpython.com/2018/08/21/celery-4-windows/

Distributed Python Chapter 6

[198]

How it works...
In order to use Celery, the first thing to do is to run the RabbitMQ service, and then execute
the Celery worker server (that is, the addTask.py file script) by typing the following:

C:\>celery -A addTask worker --loglevel=info

The output is as follows:

Microsoft Windows [Versione 10.0.17134.648]
(c) 2018 Microsoft Corporation. Tutti i diritti sono riservati.

C:\Users\Giancarlo>cd C:\Users\Giancarlo\Desktop\Python Parallel
Programming CookBook 2nd edition\Python Parallel Programming NEW
BOOK\chapter_6 - Distributed Python\esempi

C:\Users\Giancarlo\Desktop\Python Parallel Programming CookBook 2nd
edition\Python Parallel Programming NEW BOOK\chapter_6 - Distributed
Python\esempi>celery -A addTask worker --loglevel=info

 -------------- celery@pc-giancarlo v4.2.2 (windowlicker)
---- **** -----
--- * *** * -- Windows-10.0.17134 2019-04-01 21:32:37
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: tasks:0x1deb8f46940
- ** ---------- .> transport: amqp://guest:**@localhost:5672//
- ** ---------- .> results: disabled://
- *** --- * --- .> concurrency: 4 (prefork)
-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this
worker)
--- ***** -----
 -------------- [queues]
 .> celery exchange=celery(direct) key=celery
[tasks]
 . addTask.add

[2019-04-01 21:32:37,650: INFO/MainProcess] Connected to
amqp://guest:**@127.0.0.1:5672//
[2019-04-01 21:32:37,745: INFO/MainProcess] mingle: searching for neighbors
[2019-04-01 21:32:39,353: INFO/MainProcess] mingle: all alone
[2019-04-01 21:32:39,479: INFO/SpawnPoolWorker-2] child process 10712
calling self.run()
[2019-04-01 21:32:39,512: INFO/SpawnPoolWorker-3] child process 10696
calling self.run()
[2019-04-01 21:32:39,536: INFO/MainProcess] celery@pc-giancarlo ready.
[2019-04-01 21:32:39,551: INFO/SpawnPoolWorker-1] child process 6084
calling self.run()

Distributed Python Chapter 6

[199]

[2019-04-01 21:32:39,615: INFO/SpawnPoolWorker-4] child process 2080
calling self.run()

Then, the second script is launched using Python:

C:\>python addTask_main.py

Finally, the result should be as follows in the first Command Prompt:

[2019-04-01 21:33:00,451: INFO/MainProcess] Received task:
addTask.add[6fc350a9-e925-486c-bc41-c239ebd96041]
[2019-04-01 21:33:00,452: INFO/SpawnPoolWorker-2] Task
addTask.add[6fc350a9-e925-486c-bc41-c239ebd96041] succeeded in 0.0s: 10

As you can see, the result is 10. Let's focus on the first script, addTask.py: in the first two
lines of code, we create a Celery application instance that uses the RabbitMQ service
broker:

from celery import Celery
app = Celery('addTask', broker='amqp://guest@localhost//')

The first argument in the Celery function is the name of the current module
(addTask.py), and the second is the broker keyboard argument; this indicates the URL that
is used to connect the broker (RabbitMQ).

Now, let's introduce the task to be accomplished.

Each task must be added with the @app.task annotation (namely, decorator); the
decorator helps Celery to identify which functions can be scheduled in the task queue.

After the decorator, we create the task that the workers can execute: this will be a simple
function that performs the sum of two numbers:

@app.task
def add(x, y):
 return x + y

In the second script, addTask_main.py, we call our task by using the delay() method:

if __name__ == '__main__':
 result = addTask.add.delay(5,5)

Let's remember that this method is a shortcut to the apply_async() method, which
gives us greater control over the task execution.

Distributed Python Chapter 6

[200]

There's more...
Celery usage is very simple. It can be executed by using the following commands:

Usage: celery <command> [options]

Here, the options are as follows:

positional arguments:
 args

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit

Global Options:
 -A APP, --app APP
 -b BROKER, --broker BROKER
 --result-backend RESULT_BACKEND
 --loader LOADER
 --config CONFIG
 --workdir WORKDIR
 --no-color, -C
 --quiet, -q

The main commands are as follows:

+ Main:
| celery worker
| celery events
| celery beat
| celery shell
| celery multi
| celery amqp

+ Remote Control:
| celery status

| celery inspect --help
| celery inspect active
| celery inspect active_queues
| celery inspect clock
| celery inspect conf [include_defaults=False]
| celery inspect memdump [n_samples=10]
| celery inspect memsample
| celery inspect objgraph [object_type=Request] [num=200 [max_depth=10]]
| celery inspect ping
| celery inspect query_task [id1 [id2 [... [idN]]]]

Distributed Python Chapter 6

[201]

| celery inspect registered [attr1 [attr2 [... [attrN]]]]
| celery inspect report
| celery inspect reserved
| celery inspect revoked
| celery inspect scheduled
| celery inspect stats

| celery control --help
| celery control add_consumer <queue> [exchange [type [routing_key]]]
| celery control autoscale [max [min]]
| celery control cancel_consumer <queue>
| celery control disable_events
| celery control election
| celery control enable_events
| celery control heartbeat
| celery control pool_grow [N=1]
| celery control pool_restart
| celery control pool_shrink [N=1]
| celery control rate_limit <task_name> <rate_limit (e.g., 5/s | 5/m |
5/h)>
| celery control revoke [id1 [id2 [... [idN]]]]
| celery control shutdown
| celery control terminate <signal> [id1 [id2 [... [idN]]]]
| celery control time_limit <task_name> <soft_secs> [hard_secs]

+ Utils:
| celery purge
| celery list
| celery call
| celery result
| celery migrate
| celery graph
| celery upgrade

+ Debugging:
| celery report
| celery logtool

+ Extensions:
| celery flower

Distributed Python Chapter 6

[202]

Celery protocol can be implemented in any language by using Webhooks (https:/ /
developer.github. com/ webhooks/).

See also
More information on Celery can be found at http:/ /www. celeryproject. org/ .
The recommended message brokers (https:/ /en. wikipedia. org/ wiki/ Message_
broker) are RabbitMQ (https:/ /en. wikipedia. org/wiki/ RabbitMQ) or Redis
(https:/ / en. wikipedia. org/ wiki/ Redis). Additionally, there is MongoDB
(https:/ / en. wikipedia. org/ wiki/ MongoDB), Beanstalk, Amazon SQS (https:/ /
en.wikipedia. org/ wiki/ Amazon_ Simple_ Queue_ Service), CouchDB (https:/ /
en.wikipedia. org/ wiki/ Apache_ CouchDB), and IronMQ (https:/ / www.iron. io/
mq).

RMI with Pyro4
Pyro is short for Python Remote Objects. It works exactly like the Java RMI (short
for Remote Method Invocation) allowing to invoke a method of a remote object (belonging
to a different process) exactly as if the object were local (belonging to the same process in
which the invocation runs).

The use of an RMI mechanism, in an object-oriented system, involves significant
advantages of uniformity and symmetry in the project, as this mechanism enables the
modelling of interactions between distributed processes using the same conceptual tool.

https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Apache_CouchDB
https://www.iron.io/mq
https://www.iron.io/mq
https://www.iron.io/mq
https://www.iron.io/mq
https://www.iron.io/mq
https://www.iron.io/mq
https://www.iron.io/mq
https://www.iron.io/mq
https://www.iron.io/mq
https://www.iron.io/mq

Distributed Python Chapter 6

[203]

As you can see from the following diagram, Pyro4 enables objects to be distributed in a
client/server style; this means that the main parts of a Pyro4 system may switch from a
client caller to a remote object, which is called to serve a function:

RMI

It is important to note that during the remote calling, there are always two distinct parts: a
client and a server that accept and execute the client call.

Getting ready
The entire method of managing this mechanism in a distributed way is provided by Pyro4.
To install the latest release of Pyro4, use the pip installer (Windows installation is used
here) and add the following command:

C:\>pip install Pyro4

We are using the pyro_server.py and pyro_client.py codes for this recipe.

Distributed Python Chapter 6

[204]

How to do it...
In this example, we'll see how to build and use a simple client-server communication using
the Pyro4 middleware. The code for the client is pyro_server.py:

Import the Pyro4 library:1.

import Pyro4

Define the Server class that contains the welcomeMessage() method that will2.
be exposed:

class Server(object):
 @Pyro4.expose
 def welcomeMessage(self, name):
 return ("Hi welcome " + str (name))

Note that the decorator, @Pyro4.expose, means that the preceding
method will be remotely accessible.

The startServer function contains all the instructions that are used to start the3.
server:

def startServer():

Next, build the server instance of the Server class:4.

server = Server()

Then, define the Pyro4 daemon: 5.

daemon = Pyro4.Daemon()

To execute this script, we must run a Pyro4 statement to locate a nameserver:6.

ns = Pyro4.locateNS()

Register the object server as Pyro object; it will only be known inside the Pyro7.
daemon:

uri = daemon.register(server)

Distributed Python Chapter 6

[205]

Now, we can register the object server with a name in the nameserver:8.

ns.register("server", uri)

The function ends with a call to the daemon's requestLoop method. This starts9.
the event loop of the server and waits for calls:

print("Ready. Object uri =", uri)
daemon.requestLoop()

Finally, call startServer via the main program:10.

if __name__ == "__main__":
 startServer()

Here is the code for the client (pyro_client.py):

Import the Pyro4 library:1.

import Pyro4

The Pyro4 API enables the developer to distribute objects in a transparent way.2.
In this example, the client script sends requests to the server program in order to
execute the welcomeMessage() method:

uri = input("What is the Pyro uri of the greeting object?
").strip()
name = input("What is your name? ").strip()

Then, the remote call is created: 3.

server = Pyro4.Proxy("PYRONAME:server")

Finally, the client calls the server, printing a message:4.

print(server.welcomeMessage(name))

How it works...
The preceding example is composed of two main functions: pyro_server.py and
pyro_client.py.

Distributed Python Chapter 6

[206]

In pyro_server.py, the Server class object provides the welcomeMessage() method,
returning a string equal to the name inserted in the client session:

class Server(object):
 @Pyro4.expose
 def welcomeMessage(self, name):
 return ("Hi welcome " + str (name))

Pyro4 uses daemon objects to dispatch incoming calls to appropriate objects. A server must
create just one daemon that manages everything from its instance. Each server has a
daemon that knows about all the Pyro objects that the server provides:

 daemon = Pyro4.Daemon()

As for the pyro_client.py function, the remote call is first performed and creates a
Proxy object. In particular, the Pyro4 client uses proxy objects to forward method calls to
the remote objects, and then passes the results back to the calling code:

server = Pyro4.Proxy("PYRONAME:server")

In order to execute a client-server connection, we need to have a Pyro4 nameserver
running. In Command Prompt, type the following:

C:\>python -m Pyro4.naming

After this, you'll see the following message:

Not starting broadcast server for localhost.
NS running on localhost:9090 (127.0.0.1)
Warning: HMAC key not set. Anyone can connect to this server!
URI = PYRO:Pyro.NameServer@localhost:9090

The preceding message means that the nameserver is running in your network. Finally, we
can start the server and the client scripts in two separate Windows consoles:

To run pyro_server.py, just type the following:1.

C:\>python pyro_server.py

Following that, you'll see something like this:2.

Ready. Object uri =
PYRO:obj_76046e1c9d734ad5b1b4f6a61ee77425@localhost:63269

Then, run the client by typing the following:3.

C:\>python pyro_client.py

Distributed Python Chapter 6

[207]

The following message will be printed out:4.

What is your name?

Insert a name (for example, Ruvika):5.

What is your name? Ruvika

The following welcome message will be displayed:6.

Hi welcome Ruvika

There's more...
Among the features of Pyro4, there is the creation of object topologies. For example, let's
suppose we want to build a distributed architecture that follows a chain topology, as
follows:

Chaining objects with Pyro4

The Client makes a request to Server 1, and then the request is forwarded to Server 2,
which then calls Server 3. The chain call ends when Server 3 calls Server 1.

Distributed Python Chapter 6

[208]

Implementing chain topology
To implement a chain topology using Pyro4, we need to implement a chain object and the
client and server objects. The Chain class allows the call to be redirected to the next
server by processing the input message and reconstructing the server address to which the
request should be addressed.

Also note, in this case, the @Pyro4.expose decorator, which allows all the methods of the
class (chainTopology.py) to be exposed:

import Pyro4

@Pyro4.expose
class Chain(object):
 def __init__(self, name, next_server):
 self.name = name
 self.next_serverName = next_server
 self.next_server = None
 def process(self, message):
 if self.next_server is None:
 self.next_server = Pyro4.core.Proxy("PYRONAME:example.\
 chainTopology." + self.next_serverName)

If the chain is closed (the last call is done from server_chain_3.py to
server_chain_1.py), then a closing message is printed out:

 if self.name in message:
 print("Back at %s;the chain is closed!" % self.name)
 return ["complete at " + self.name]

A forwarding message is printed out if there is a next element in the chain:

 else:
 print("%s forwarding the message to the object %s" %\
 (self.name, self.next_serverName))
 message.append(self.name)
 result = self.next_server.process(message)
 result.insert(0, "passed on from " + self.name)
 return result

Next, we have the source code for the client (client_chain.py):

import Pyro4

obj = Pyro4.core.Proxy("PYRONAME:example.chainTopology.1")
print("Result=%s" % obj.process(["hello"]))

Distributed Python Chapter 6

[209]

Following this is the source code for the first server (namely, server_1) in the chain that is
called from the client (server_chain_1.py). Here, the relevant libraries are imported.
Note, the import to the chainTopology.py file that was described previously:

import Pyro4
import chainTopology

Note also that the source code for the servers only differs as regards the definitions of the
current and the next servers of the chain:

current_server= "1"
next_server = "2"

The remaining lines of code define the communication with the next element in the chain:

servername = "example.chainTopology." + current_server
daemon = Pyro4.core.Daemon()
obj = chainTopology.Chain(current_server, next_server)
uri = daemon.register(obj)
ns = Pyro4.locateNS()
ns.register(servername, uri)
print("server_%s started " % current_server)
daemon.requestLoop()

To execute this example, first run the Pyro4 nameserver:

C:\>python -m Pyro4.naming
Not starting broadcast server for localhost.
NS running on localhost:9090 (127.0.0.1)
Warning: HMAC key not set. Anyone can connect to this server!
URI = PYRO:Pyro.NameServer@localhost:9090

Run the three servers in three different terminals, typing each of them respectively
(Windows terminals are used here):

The first server (server_chain_1.py) in the first terminal:

C:\>python server_chain_1.py

Followed by the second server (server_chain_2.py) in the second terminal:

C:\>python server_chain_2.py

And finally, the third server (server_chain_3.py) in the third terminal:

C:\>python server_chain_3.py

Distributed Python Chapter 6

[210]

Then, run the client_chain.py script from another terminal:

C:\>python client_chain.py

This is the output, as shown in the Command Prompt:

Result=['passed on from 1','passed on from 2','passed on from 3','complete
at 1']

The preceding message is displayed as a result of the forwarding request passed across the
three servers after it returned the fact that the task is completed to server_chain_1.

Also, we can focus on the behavior of the object servers while the request is forwarded to
the next object in the chain (refer to the message underneath the start message):

server_ 1 is started and the following message is forwarded to server_ 2:1.

server_1 started
1 forwarding the message to the object 2

server_ 2 forwards the following message to server_ 3:2.

server_2 started
2 forwarding the message to the object 3

server_ 3 forwards the following message to server_ 1:3.

server_3 started
3 forwarding the message to the object 1

Finally, the message returns to the starting point (in other words, server_1),4.
closing the chain :

server_1 started
1 forwarding the message to the object 2
Back at 1; the chain is closed!

See also
The Pyro4 documentation is available
at https://buildmedia.readthedocs.org/media/pdf/pyro4/stable/pyro4.pdf.

This contains a description and some application examples of the 4.75 release.

https://buildmedia.readthedocs.org/media/pdf/pyro4/stable/pyro4.pdf

7
Cloud Computing

Cloud computing is the distribution of computing services, such as servers, storage
resources, databases, networks, software, analysis, and intelligence, via the internet (the
cloud). The purpose of this chapter is to provide an overview of the main cloud computing
technologies in relation to the Python programming language.

First, we will describe the PythonAnywhere platform, with which we will deploy Python
applications on the cloud. In the context of cloud computing, two emerging technologies
will be identified: containers and serverless technologies.

Containers represent the new approach to the virtualization of resources, and
the serverless technologies represent a step forward in the field of cloud services because
they can speed up the release of applications.

In fact, you do not have to worry about the provisioning, the servers, or the infrastructure
configurations. You only have to create functions (namely, Lambda functions) that can
operate independently from the applications.

In this chapter, we will cover the following recipes:

What is cloud computing?
Understanding the cloud computing architecture
Developing web applications with PythonAnywhere
Dockerizing a Python application
Introducing serverless computing

We will also see how to take advantage of the AWS Lambda framework for the development
of Python applications.

Cloud Computing Chapter 7

[212]

What is cloud computing?
Cloud computing is a computational model for the distribution of services based on a set of
resources, such as virtual processing, mass memory, and networking, which can be
dynamically aggregated and activated as platforms to run applications, satisfying
appropriate levels of service and optimizing the efficiency of resource use.

This can be acquired and released quickly with minimum management effort or interaction
with the service provider. This cloud model is composed of five essential
characteristics, three service models, and four deployment models.

In particular, the five essential characteristics are as follows:

Free and on-demand access: This allows users to access—through user friendly
interfaces—the services offered by the provider without human interaction.
Ubiquitous access to the network: Resources are available throughout the
network and can be accessed—via standard devices—such as smartphones, tablets,
and personal computers.
Quick elasticity: This is the ability of the cloud to increase or reduce the
resources assigned in a rapid and automatic way, such as making it seem that
they are infinite to the user. This provides great scalability to the system.
Measured service: Cloud systems constantly monitor the resources offered and
optimize them automatically based on the estimated use. In this way, the
customer only pays for the resources that are actually used in that particular
session.
Resource sharing: The provider provides its resources through a multi-tenant
model so that they can be assigned and reassigned dynamically, based on the
customer's request, and used by multiple consumers:

Cloud Computing Chapter 7

[213]

Cloud computing main features

However, there are many definitions of cloud computing, each of which has different
interpretations and meanings. The National Institute of Standards and Technology (NIST) has
tried to provide a detailed and official explanation (https:/ /csrc. nist. gov/
publications/detail/ sp/ 800- 145/ final).

Another feature (not listed in the definition of NIST, but which is the basis of cloud
computing) is the concept of virtualization. This is the possibility of executing multiple
OSes on the same physical resources, guaranteeing numerous advantages, such as
scalability, cost reduction, and greater speed in providing new resources to customers.

The most common approaches to virtualization are as follows:

Containers
Virtual machines

https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final

Cloud Computing Chapter 7

[214]

Both solutions have almost the same advantages as far as the isolation of applications is
concerned, but they work at different levels of virtualization because the containers
virtualize the OS and the virtual machines virtualize the hardware. This means that the
containers are more portable and efficient.

The most common application for virtualizing through containers is Docker. We will go
through a brief introduction to this framework and we will see how to containerize (or
dockerize) a Python application.

Understanding the cloud computing
architecture
The architecture of cloud computing refers to a series of components and sub-components
that make up the structure of the system. Typically, it can be grouped into the two main
sections of Frontend and Backend:

Cloud computing architecture

Each section has a very specific meaning and scope and is linked to the other via a virtual
network or an internet network.

The Frontend refers to the part of the cloud computing system that is visible to the user,
which is realized through a series of interfaces and applications that allow the consumer to
access the cloud system. Different cloud computing systems have different UIs.

Cloud Computing Chapter 7

[215]

The Backend is the part that is not visible to the customer. This section contains all the
resources that allow the provider to provide cloud computing services such as servers,
storage systems, and virtual machines. The idea behind the creation of the backend is to
entrust the management of the entire system to a single central server, which will,
therefore, have to constantly monitor traffic and user requests, perform access control, and
implement communication protocols.

Among the various components of this architecture, the most important is the Hypervisor,
also called the Virtual Machine Manager. This is a firmware that allocates resources
dynamically and also allows you to share a single instance among multiple users. In short,
this is the program that realizes virtualization, which is one of the main attributes of cloud
computing.

After providing a definition of cloud computing and explaining the essential features, we'll
introduce the service models in which cloud computing services can be provided.

Service models
The cloud computing services offered by the providers fall into three broad categories:

Software as a Service (SaaS)
Platform as a Service (PaaS)
Infrastructure as a Service (IaaS)

This classification led to the definition of a scheme that takes the name of the SPI model
(see the bold initials in the previous list). Sometimes it is called the cloud computing stack,
as these categories are based on each other.

A detailed description of each of these levels will now be given, following a top-down
approach.

SaaS
A SaaS provider provides users with software applications on-demand, which are
accessible through any internet device, such as a web browser. Furthermore, the provider
hosts the software application and the underlying infrastructure, relieving the customer
from the burden of management and maintenance activities such as software updates and
the application of security patches.

Cloud Computing Chapter 7

[216]

There are many advantages of using this model for both the user and the provider. For the
user, there is a considerable reduction in management costs, and for the provider, they have
more control over the traffic, thus allowing them to avoid any overloads. An example of
SaaS is any web-based email service, such as Gmail, Outlook, Salesforce and Yahoo!.

PaaS
Unlike SaaS, this service refers to the entire development environment of an application,
not just its use. So, the PaaS solution provides a cloud platform that is accessible through a
web browser for the development, testing, distribution, and management of software
applications. Furthermore, the provider provides web-based interfaces, a multi-tenant
architecture, and communication tools in order to allow developers to create applications in
a simpler way. This supports the entire life cycle of the software and also favoring the
cooperation.

Examples of PaaS are Microsoft Azure Services, Google App Engine, and Amazon Web
Services.

IaaS
IaaS is a model that offers the computing infrastructure as an on-demand service. You can,
therefore, purchase virtual machines, on which you can run your own software, storage
resources (with the possibility of rapidly increasing or reducing the storage capacity based
on your needs), networks, and OS by paying based on what you actually use. A dynamic
infrastructure of this type adds greater scalability, while also significantly reducing costs.

This model is used both by small emerging companies that do not have large capital to
invest and by established companies seeking to streamline their hardware architecture. The
range of IaaS sellers is very wide, including Amazon Web Services, IBM, and Oracle.

Distribution models
Cloud computing architectures are not all the same. In fact, there are four different
distribution models:

The public cloud
The private cloud
The cloud community
The hybrid cloud

Cloud Computing Chapter 7

[217]

Public cloud
This distribution model is open to all, both individual users and companies. Typically, the
public cloud runs in a data center owned by the service provider that handles hardware,
software, and other support infrastructure. In this way, the user is exempt from any
maintenance activities/expenses.

Private cloud
Also known as internal clouds, private clouds offer the same advantages as public clouds,
but provide greater control over data and processes. This model is presented as a cloud
infrastructure that works exclusively for a company and is therefore managed and hosted
within the borders of the given company. Clearly, the organization that uses it can extend
its architecture to any group that it is linked to by a business relationship.

By adopting this type of solution, possible problems concerning the violation of sensitive
data and industrial espionage are avoided without neglecting the possibility of using a
simplified, configurable, and high-performing working provisioning system. Precisely for
this reason, in recent years, the number of companies that use the private cloud has
increased significantly.

Cloud community
Conceptually, this model describes a shared infrastructure that is implemented and
managed by several companies with common interests. This type of solution is rarely used
because sharing the responsibilities and management activities among the various
members of the community could become complicated.

Hybrid cloud
NIST defines this as the result of the composition of the three implementation models
mentioned previously (the private, public, and community clouds), trying to take the
advantages of each of the three in order to make up for where the others are weaker. The
clouds used remain distinct entities, and this can cause a lack of operational consistency.
Therefore, companies that adopt this model have the task of guaranteeing, through
proprietary technologies, the interoperability of their servers, optimizing them for the
specific roles they must play.

Cloud Computing Chapter 7

[218]

A feature that distinguishes the hybrid cloud from all others is the cloudburst or the
possibility of being able to dynamically transfer excess traffic from the private cloud to the
public cloud in the presence of large peak demand.

This implementation model is adopted by those companies that intend to share their
software applications while retaining their sensitive data in internal clouds.

Cloud computing platforms
Cloud computing platforms are sets of software and technologies that enable the delivery
of resources in the cloud (on-demand, scalable, and virtualized resources). Among the most
popular platforms are those of Google and, of course, the milestone of cloud computing:
Amazon Web Services (AWS). Both support Python as a development language.

However, in the next recipe, we will focus on PythonAnywhere, which is a cloud platform
developed specifically for the deployment of web applications in the Python programming
language.

Developing web applications with
PythonAnywhere
PythonAnywhere is an online hosting development and service environment based on the
Python programming language. Once registered on the site, you will be directed to the
dashboard, which includes an advanced shell and text editor that is made entirely with
HTML code. With this, you can create, modify, and execute your own scripts.

Moreover, this development environment also allows you to choose which version of
Python to work with. In this, a simple wizard helps us to preconfigure an application.

Cloud Computing Chapter 7

[219]

Getting ready
Let's first see how to get login credentials to the site.

The following screenshot shows the various types of subscriptions, and also, the possibility
of obtaining a free account (please go to https:/ /www. pythonanywhere. com/ registration/
register/beginner/):

PythonAnywhere: Registration page

Once access to the site has been obtained (it is recommended that you create a beginner
account), we log in. Given that the Python shells that are integrated into the browsers are
very useful, especially for beginners and for introductory programming courses, they are
certainly not new from a technological point of view.

https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/
https://www.pythonanywhere.com/registration/register/beginner/

Cloud Computing Chapter 7

[220]

Instead, the added value of PythonAnywhere is perceived as soon as you log in by
accessing the personal dashboard:

PythonAnywhere: Dashboard

Through the personal dashboard, we can choose which version of Python to run between
2.7 and 3.7, with or without the IPython interface:

Cloud Computing Chapter 7

[221]

PythonAnywhere: Console view

The number of consoles that can be used varies according to the type of subscription you
have. In our case, having made a beginner account, we can use two Python consoles at
most. Once selecting a Python shell, such as version 3.5, the following view should open on
the web browser:

PythonAnywhere: Python shell

Cloud Computing Chapter 7

[222]

In the following section, we want to show you how to use PythonAnywhere to write a
simple web application.

How to do it...
Let's have a look at the following steps:

On the Dashboard, open the Web tab:1.

PythonAnywhere: Web app view

The interface tells us that we don't have a web application yet. By selecting Add a2.
new web app, the following view opens. It tells us that our applications will
have the following web address: loginname.pythonanywhere.com (for this
example, the web address of the application will be
giazax.pythonanywhere.com):

http://loginname.pythonanywhere.com
http://giazax.pythonanywhere.com

Cloud Computing Chapter 7

[223]

PythonAnywhere: Web app wizard

When we click on Next, we can select the Python web framework we want to3.
use:

PythonAnywhere: Web framework wizard

Cloud Computing Chapter 7

[224]

We select Flask as a web framework, and then click on Next to choose which4.
Python version we want to use, as shown here:

PythonAnywhere: Web framework wizard

Flask is a micro-framework for Python that is easy to install and use, and
is used by companies such as Pinterest and LinkedIn.

If you don't know what a framework for creating web applications is, then
you can imagine a set of programs with the aim of facilitating the creation
of web services such as web servers and APIs. More information on Flask
can be found at http:/ /flask. pocoo. org/docs/ 1. 0/.

http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/
http://flask.pocoo.org/docs/1.0/

Cloud Computing Chapter 7

[225]

In the preceding screenshot, we select Python 3.5 for Flask 1.0.2, then let's click5.
on Next to enter the path for a Python file to use in order to hold the
Flask application. Here, the default file is selected:

PythonAnywhere: Flask project definition

Cloud Computing Chapter 7

[226]

When we click on Next for the final time, the following screen is displayed,6.
which summarizes the web application's configuration parameters:

PythonAnywhere: Configuration page for giazax.pythonanywhere.com

Now, let's see what happens with this.

How it works...
In the address bar of the web browser, type the URL of our web application, in our
case, https://giazax.pythonanywhere.com/. The site shows a simple welcome phrase:

Cloud Computing Chapter 7

[227]

giazax.pythonanywhere.com site page

The source code for this application can be seen by selecting Go to directory in
correspondence with the Source code label:

PythonAnywhere: Configuration page

Cloud Computing Chapter 7

[228]

Here, it is possible to analyze the files that make up the web application:

PythonAnywhere: Project site repository

It is also possible to upload new files and possibly modify the contents. Here, we select
the flask_app.py file of our first web application. The content looks like a minimal Flask
application:

A very simple Flask Hello World app for you to get started with...

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello from Flask!'

The route() decorator is used by Flask to define the URL that should trigger
the hello_world function. This simple function returns the message displayed in the web
browser.

There's more...
The PythonAnywhere shell is made with HTML, making it virtually portable across
multiple platforms and browsers, including Apple's mobile versions. It is possible to keep
several shells open (in variable numbers according to the chosen account profile), share
them with other users, or terminate them as needed.

Cloud Computing Chapter 7

[229]

PythonAnywhere has a rather advanced text editor with syntax coloring and automatic
indentation, through which you can create, modify, and execute your own scripts. The files
are stored in a storage area of varying size depending on the profile of the account, but if
there is not enough space or if you wanted a more fluid integration with the filesystem of
your PC, then PythonAnywhere allows you to use a Dropbox account, making your shared
folder accessible on the popular storage service.

Each shell can contain a WSGI script that corresponds to a specific URL. It is also possible
to start a bash shell from which to invoke Git and interact with the filesystem. Finally, as we
have seen, there is a wizard available that allows us to preconfigure a Django and web2py
or Flask application.

Furthermore, there is the possibility of exploiting a MySQL database, which is a series of
cron jobs that allows us to execute certain scripts periodically. Therefore, we will get the
true essence of PythonAnywhere: deployment of web applications at the speed of light.

PythonAnywhere relies completely on the Amazon EC2 infrastructure, so there should be no
reason not to trust the service. For this reason, it is strongly recommended for those who
think of making a personal use. The beginner account offers more resources than the
corresponding one on Heroku (https:/ /www. heroku. com/), the deployment is simpler than
on OpenShift (https:/ /www. openshift. com/), and the whole system is generally much
more flexible than Google App Engine (https:/ /cloud. google. com/appengine/).

See also
The main resources on PythonAnywhere can be found here: https:/ /www.
pythonanywhere. com.
For web programming via Python, PythonAnywhere supports Django (https:/ /
www.djangoproject. com/) and web2py (http:/ /www. web2py. com/), in addition
to Flask.

As with Flask, it is recommended that you visit these sites for information on how to work
with these libraries.

https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://www.pythonanywhere.com
https://www.pythonanywhere.com
https://www.pythonanywhere.com
https://www.pythonanywhere.com
https://www.pythonanywhere.com
https://www.pythonanywhere.com
https://www.pythonanywhere.com
https://www.pythonanywhere.com
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
http://www.web2py.com/
http://www.web2py.com/
http://www.web2py.com/
http://www.web2py.com/
http://www.web2py.com/
http://www.web2py.com/
http://www.web2py.com/
http://www.web2py.com/
http://www.web2py.com/
http://www.web2py.com/

Cloud Computing Chapter 7

[230]

Dockerizing a Python application
Containers are virtualization environments. They include everything that the software
needs, namely libraries, dependencies, filesystems, and network interfaces. Unlike classic
virtual machines, all the aforementioned elements share the kernel with the machine they
are running on. In this way, the impact on the use of the resources of the host node is
greatly reduced.

This makes the container a very attractive technology in terms of scalability, performance,
and isolation. Containers are not young technology; they had success with the launch of
Docker in 2013. Since then, they have completely revolutionized the standards used for
application development and management.

Docker is a container platform based on the implementation of Linux Containers (LXC),
which extends the functionality of this technology with the ability to manage containers as
self-contained images, and adds additional tools for coordinating their life cycle and saving
their state.

The idea of containerization is precisely to allow a given application to be executed on any
type of system since all its dependencies are already included in the container itself.

In this way, the application becomes highly portable and can be easily tested and deployed
on any type of environment, both on-premises and, above all, in the cloud.

Now, let's see how to dockerize a Python application using Docker.

Getting ready
The Docker team's intuition was to take the concept of a container and build an ecosystem
around it that would simplify its use. This ecosystem includes a series of tools:

Docker engine (https:/ /www. docker. com/ products/ docker- engine)
Docker toolbox (https:/ / docs. docker. com/ toolbox/)
Swarm (https:/ / docs. docker. com/engine/ swarm/)
Kitematic (https:/ / kitematic. com/)

https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://kitematic.com/
https://kitematic.com/
https://kitematic.com/
https://kitematic.com/
https://kitematic.com/
https://kitematic.com/
https://kitematic.com/
https://kitematic.com/

Cloud Computing Chapter 7

[231]

Installing Docker for Windows
The installation is quite simple: once you have downloaded the installer (https:/ /docs.
docker.com/docker- for- windows/ install/), just run it and you're done. The installation
process is generally very linear. The only thing that needs attention is the final phase of the
installation, in which it might be required to enable Hyper-V features. If so, then we accept
and restart the machine.

Once the computer is restarted, the Docker icon should appear in the system tray in the
bottom right of the screen.

Open Command Prompt or the PowerShell console and check whether everything is okay
by executing the docker version command:

C:\>docker version
Client: Docker Engine - Community
 Version: 18.09.2
 API version: 1.39
 Go version: go1.10.8
 Git commit: 6247962
 Built: Sun Feb 10 04:12:31 2019
 OS/Arch: windows/amd64
 Experimental: false

Server: Docker Engine - Community
 Engine:
 Version: 18.09.2
 API version: 1.39 (minimum version 1.12)
 Go version: go1.10.6
 Git commit: 6247962
 Built: Sun Feb 10 04:13:06 2019
 OS/Arch: linux/amd64
 Experimental: false

The most interesting part of the output is the subdivision that is made between the client
and the server. The client is our local Windows system, while the server is the Linux virtual
machine that Docker instantiated behind the scenes. The parts communicate with each
other thanks to the API layer, as mentioned in the introduction of this recipe.

Now, let's see how to containerize (or dockerize) a simple Python application.

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install/

Cloud Computing Chapter 7

[232]

How to do it...
Let's imagine we want to deploy the following Python application, which we call
dockerize.py:

from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():
 return "Hello World!"
if __name__ == "__main__":
 app.run(host="0.0.0.0", port=int("5000"), debug=True)

The example application uses the Flask module. It implements a simple web application at
the localhost address, 5000.

The first step is to create the following text file, with the extension of .py, which we will
call Dockerfile.py:

FROM python:alpine3.7
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
EXPOSE 5000
CMD python ./dockerize.py

The directives listed in the previous code perform the following tasks:

FROM python: alpine3.7 instructs Docker to use Python version 3.7.
COPY copies the application into the container image.
WORKDIR sets the working directory (WORKDIR).
The RUN instruction calls the pip installer, pointing to
the requirements.txt file. It contains the list of dependencies that the
application must execute (in our case the only dependence is flask).
The EXPOSE directive exposes to the port that is used by Flask.

Cloud Computing Chapter 7

[233]

So, in summary, we have written three files:

The application to be containerized: dockerize.py
Dockerfile

The dependency list file

So, we need to create an image of the dockerize.py application:

docker build --tag dockerize.py

This will tag the my-python-app image and build it.

How it works...
After the my-python-app image is built, you can run it as a container:

docker run -p 5000:5000 dockerize.py

The application is then started as a container, after which the name parameter sends the
name to the container and the -p parameter maps the 5000 host port to the container port
of 5000.

Next, you need to open your web browser, then on the address bar, type localhost:
5000. If everything worked the right way, then you should see the following web page:

Docker application

Cloud Computing Chapter 7

[234]

Docker runs the dockerize.py container by using the run command, and the result is a
web application. The image contains the instructions necessary for the operation of the
container.

The correlation between container and image can be understood by referring to the object-
oriented programming paradigm by associating the image with a class and the container
with the class instance.

It is useful to recap what happens when we create an instance of a container:

The image of the container is (if not already present) unloaded locally.
An environment in which to start the container is created.
A message is printed on the screen.
The previously created environment is then abandoned.

This all takes place in a few seconds and with a simple, intuitive, and readable command.

There's more...
Apparently, containers and virtual machines seem to be very similar concepts. But
although these two solutions have common characteristics, they are profoundly different
technologies, in the same way, that we must start thinking about how the architectures of
our applications are different. We can create a container with our monolithic application
inside, but in this way, we will not fully exploit the strength of the containers, and
therefore, of Docker.

A possible software architecture suitable for a container infrastructure is the
classic microservice architecture. The idea is to break down the application into many small
components—each with their own specific task—that are able to exchange messages and
cooperate with each other. The deployment of these components will then take place
individually, in the form of many containers.

Cloud Computing Chapter 7

[235]

A scenario that can be handled with microservices is absolutely impractical with a virtual
machine since every new virtual machine instantiated would require a good expenditure of
energy for the host machine. Containers, on the other hand, are very light, since they carry
out completely different virtualization from that practiced by virtual machines:

Microservice architecture in virtual machine and Docker implementation

In virtual machines, a tool called a Hypervisor takes care of reserving (statically or
dynamically) a certain amount of resources from the host OS to be dedicated to one or more
OSes, called guests or hosts. A guest OS will be completely isolated from the host OS. This
mechanism is very expensive in terms of resources, so the idea of combining a microservice
with a virtual machine is completely impossible.

Containers, on the other hand, make a completely different contribution to the issue. The
isolation is much blander and all the running containers share the same kernel as the
underlying OS. Hypervisor overhead completely disappears, and a single host can host
hundreds of containers.

When we ask Docker to run a container from its image, it must be present on the local disk,
otherwise Docker will warn us of the problem (with a message reading Unable to find
image 'hello-world: latest' locally) and will download it autonomously.

Cloud Computing Chapter 7

[236]

To find out which images were downloaded from Docker on our computer, we use
the docker images command:

C:\>docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
dockerize.py latest bc3d70b05ed4 23 hours ago 91.8MB
<none> <none> ca18efb44b3c 24 hours ago 91.8MB
python alpine3.7 00be2573e9f7 2 months ago 81.3MB

The repository is a container of related images. For example, the dockerize repository
contains various versions of the dockerize image. In the Docker world, the term tag is more
correctly used to express the concept of image versioning. In the preceding code example,
the image has been tagged as the latest and is the only tag available for the dockerize
repository.

The latest tag is the default tag: whenever we refer to a repository without specifying the
tag name, Docker will implicitly refer to the latest tag, and if this does not exist, then an
error will be shown. Therefore, as a best practice, the repository tag form would be
preferable as it allows greater predictability regarding the content of the image, avoiding
possible conflicts between containers and errors due to the lack of the latest tag.

See also
Container technology is a very broad concept that can be explored by consulting numerous
articles and examples of applications on the web. However, before starting this long and
difficult journey, it is advisable to start from the website (https:/ /www. docker. com/),
which is complete and fully informative.

In the next section, we will examine the main features of serverless computing, whose main
goal is to make it easier for a software developer to compose code that is designed to run on
a cloud platform.

Introducing serverless computing
In recent years, a new service model named Function as a Service (FaaS) has been
developed, which is also known as serverless computing.

https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/

Cloud Computing Chapter 7

[237]

Serverless computing is a cloud computing paradigm that allows the execution of
applications without worrying about problems related to the underlying infrastructure. The
term serverless could be misleading; in fact, it could be thought that this model does not
foresee the use of processing servers. In reality, it indicates that the provisioning,
scalability, and management of the servers on which the applications are executed are
administered automatically and in a completely transparent manner for the developer.
Everything is possible thanks to a new architecture model called serverless.

The first FaaS model dates back to Amazon, when the AWS Lambda service was released
in 2014. Over time, other alternatives were added to the Amazon solution, which were
developed by other major vendors such as Microsoft, with its Azure Functions, and by
IBM and Google, with their own Cloud Functions. There are also valid open source
solutions: among the most commonly used, we have Apache OpenWhisk, which is used by
IBM on Bluemix for its serverless offering, but also OpenLambda and IronFunctions, with
the latter being based on Docker's container technology.

In this recipe, we see how to implement a serverless Python function via AWS Lambda.

Getting ready
AWS is a whole class of cloud services offered and administered through a common
interface. The common interface through which the services are offered in the AWS web
console is reachable at https:/ /console. aws.amazon. com/ .

This type of service is charged. However, for the first year, a free tier is available. This a set
of services use the minimum amount of resources and can be used for free to both evaluate
the services and for the development of applications.

For details on how to create a free account with AWS, please refer to the
official Amazon documentation at https:/ /aws. amazon. com.

In these sections, we will outline the basics of running code in AWS Lambda without
having to provision or manage any servers. We will show how to create a Hello World
function in Lambda by using the AWS Lambda console. We will also explain how to
manually call up the Lambda function by using sample event data and how to interpret the
output parameters. All the operations shown in this tutorial can be performed as part of the
free plan at https://aws.amazon.com/free.

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/free
https://aws.amazon.com/free

Cloud Computing Chapter 7

[238]

How to do it...
Let's have a look at the following steps:

The first thing to do is log in to the Lambda console1.
(https://console.aws.amazon.com/console/home). Then, you need to locate and
select Lambda under compute in order to open the AWS Lambda console (which
is highlighted in green in the following screenshot):

AWS: Selecting a Lambda service

https://console.aws.amazon.com/console/home

Cloud Computing Chapter 7

[239]

Then, in the AWS Lambda console, select Get Started Now and then create a2.
Lambda function:

AWS: Lambda start page

Cloud Computing Chapter 7

[240]

In the filter box, type hello-world-python and select the hello-world-3.
python blueprint.
Now we need to configure the Lambda function. The following list shows the4.
configurations and provides example values:

Configure function:
Name: Enter the name of the function here. For this tutorial, enter
hello-world-python.
Description: Here, you can enter a brief description of the function.
This box is pre-filled with the phrase A starter AWS Lambda Function.
Runtime: At the moment, it is possible to write the code of the Lambda
function in Java, Node.js, and Python 2.7, 3.6, and 3.7. For this tutorial,
set up Python 2.7 as a runtime.

Lambda function code:
As you can see in the following screenshot, it is possible to review the
Python sample code.

Lambda function handler and role:
Handler: You can specify a method in which AWS Lambda can start
executing the code. AWS Lambda provides event data as input to the
handler, which will process the events. In this example, Lambda
identifies the event from the example code, so the field will be
compiled with lambda_function.lambda_handler.

Cloud Computing Chapter 7

[241]

Role: Click on the drop-down menu and select Basic Execution Role:

AWS Configure function page

Cloud Computing Chapter 7

[242]

At this point, it is necessary to create a role for execution (named IAM Role) with5.
the necessary authorizations to be interpreted by AWS Lambda as the executor of
the Lambda function. By clicking Allow, the Configure function page will be
returned, and the lambda_basic_execution function will be selected:

AWS: Role summary page

Cloud Computing Chapter 7

[243]

The console saves the code in a compressed file, which represents the6.
distribution package. The console then loads the distribution package into AWS
Lambda to create the Lambda function:

AWS: Lambda review page

Cloud Computing Chapter 7

[244]

It is now possible to test the functions, check the results, and display the logs:

To run our first Lambda function, click on Test:1.

AWS: Lambda testing page

Cloud Computing Chapter 7

[245]

Enter an event in the pop-up editor to test the function.2.
Select Hello World from the Sample event template list on the Input test event3.
page:

AWS: Lambda template

Click Save and test. Then, AWS Lambda will perform the function on your
behalf.

Cloud Computing Chapter 7

[246]

How it works...
When execution is complete, it is possible to see the results in the console:

The Execution result section documents the correct execution of the function.
The Summary section shows the most important information reported in the Log
output section.
The Log output section shows the logs generated by the Lambda function
execution:

AWS: Execution results

There's more...
AWS Lambda monitors the functions and generates parameter reports automatically via
Amazon CloudWatch (see the following screenshot). To simplify the monitoring of the
code during execution, AWS Lambda automatically tracks the number of requests, the
latency per request, and the number of requests with errors, publishing the associated
parameters:

Cloud Computing Chapter 7

[247]

What is a Lambda function?
A Lambda function contains code that a developer wants to execute in response to certain
events. The developer takes care of configuring this code and specifying the requirements
in terms of resources within the console of the reference provider. Everything else,
including the sizing of resources, is managed automatically by the provider, based on the
workload required.

Why serverless?
The benefits of serverless computing are as follows:

No infrastructure management: Developers can focus on the product to be built
rather than on the operation and management of runtime servers.
Automatic scalability: The resources are automatically recalibrated to cope with
any type of workload, without requiring a configuration for scaling, but reacting
to real-time events.

Cloud Computing Chapter 7

[248]

Resource use optimization: Since the processing and storage resources are
dynamically allocated, it is no longer necessary to invest in excess capacity in
advance.
Cost reduction: In traditional cloud computing, payment of running resources is
expected even when they are not actually used. In the serverless case, the
applications are event-driven, meaning that when the application code is not
running, no cost is charged, so you won't have to pay for unused resources.
High availability: The services that manage the infrastructure and the
application guarantee high availability and fault tolerance.
Time to Market improvement: The elimination of infrastructure management
charges allows developers to focus on product quality and bring the code to
production faster.

Possible problems and limitations
There are some cons to take into consideration when evaluating the adoption of serverless
computing:

Possible loss of performance: If the code is not used very frequently, then
latency problems may occur in its execution. These are prominent in comparison
to cases in which it is in continuous execution on a server, a virtual machine, or a
container. This happens because (contrary to what occurs when using
autoscaling policies) with the serverless model, the cloud provider often
deallocates resources completely if the code is not used. This implies that if the
runtime takes some time to start, then additional latency is inevitably created in
the initial start phase.
Stateless mode: Serverless functions operate in stateless mode. This means that if
you want to add logic to save some elements, such as parameters to pass as
arguments to a different function, then you need to add a persistent storage
component to the application flow and link the events to each other. For
example, Amazon provides an additional tool called AWS Step Functions,
which coordinates and manages the status of all microservices and distributed
components of serverless applications.

Cloud Computing Chapter 7

[249]

Limit to resources: Serverless computing is not suitable for some types of
workloads or use cases, particularly with high-performance ones and for the
limits on the use of resources that are imposed by the cloud provider (for
example, AWS limits the number of concurrent runs of Lambda functions). These
are both due to the difficulty in provisioning the number of desired servers in a
limited and fixed period of time.
Debugging and monitoring: If you rely on non-open source solutions, then the
developers will depend on vendors for debugging and monitoring applications,
and therefore, will not be able to diagnose any problems in detail by using
additional profilers or debuggers. Thus, they will have to rely on the tools
provided by their respective providers.

See also
As we have seen, the reference point for working with serverless architectures is the AWS
framework (https:/ /aws. amazon. com/). At the preceding URL, you can find a lot of
information and tutorials, including the example described in this section.

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/

8
Heterogeneous Computing

This chapter will help us to explore the Graphics Processing Unit (GPU) programming
techniques through the Python language. The continuous evolution of GPUs is revealing
how these architectures can bring great benefits to performing complex calculations.

GPUs certainly cannot replace CPUs. However, they are a well-structured and
heterogeneous code that is able to exploit the strengths of both types of processors that can,
in fact, bring considerable advantages.

We will examine the main development environments for heterogeneous programming,
namely, the PyCUDA and Numba environments for Compute Unified Device
Architecture (CUDA) and PyOpenCL environments, which are for Open Computing
Language (OpenCL) frameworks in their Python version.

In this chapter, we will cover the following recipes:

Understanding heterogeneous computing
Understanding the GPU architecture
Understanding GPU programming
Dealing with PyCUDA
Heterogeneous programming with PyCUDA
Implementing memory management with PyCUDA
Introducing PyOpenCL
Building applications with PyOpenCL
Element-wise expressions with PyOpenCL
Evaluating PyOpenCL applications
GPU programming with Numba

Let's start with understanding heterogeneous computing in detail.

Heterogeneous Computing Chapter 8

[251]

Understanding heterogeneous computing
Over the years, the search for better performance for increasingly complex calculations has
led to the adoption of new techniques in the use of computers. One of these techniques is
called heterogeneous computing, which aims to cooperate with different (or heterogeneous)
processors in such a way as to have advantages (in particular) in terms of temporal
computational efficiency.

In this context, the processor on which the main program is run (generally the CPU) is
called the host, while the coprocessors (for example, the GPUs) are called devices. The latter
are generally physically separated from the host and manage their own memory space,
which is also separated from the host's memory.

In particular, following significant market demand, the GPU has evolved into a highly
parallel processor, transforming the GPU from devices for graphics rendering to devices for
parallelizable and computationally intensive general-purpose calculations.

In fact, the use of GPU for tasks other than rendering graphics on the screen is
called heterogeneous computing.

Finally, the task of good GPU programming is to make the most of the great level of
parallelism and mathematical capabilities offered by the graphics card, minimizing all the
disadvantages presented by it, such as the delay of the physical connection between the
host and device.

Understanding the GPU architecture
A GPU is a specialized CPU/core for vector processing of graphical data to render images
from polygonal primitives. The task of a good GPU program is to make the most of the
great level of parallelism and mathematical capabilities offered by the graphics card and
minimize all the disadvantages presented by it, such as the delay in the physical connection
between the host and device.

GPUs are characterized by a highly parallel structure that allows you to manipulate large
datasets in an efficient manner. This feature is combined with rapid improvements in
hardware performance programs, bringing the attention of the scientific world to the
possibility of using GPUs for purposes other than just rendering images.

A GPU (refer to the following diagram) is composed of several processing units called
Streaming Multiprocessors (SMs), which represent the first logic level of parallelism. In
fact, each SM works simultaneously and independently from the others:

Heterogeneous Computing Chapter 8

[252]

GPU architecture

Each SM is divided into a group of Streaming Processors (SPs), which have a core that can
run a thread sequentially. The SP represents the smallest unit of execution logic and the
level of finer parallelism.

In order to best program this type of architecture, we need to introduce GPU programming,
which is described in the next section.

Understanding GPU programming
GPUs have become increasingly programmable. In fact, their set of instructions has been
extended to allow the execution of a greater number of tasks.

Heterogeneous Computing Chapter 8

[253]

Today, on a GPU, it is possible to execute classic CPU programming instructions, such as
cycles and conditions, memory access, and floating-point calculations. The two major
discrete video card manufacturers—NVIDIA and AMD—have developed their GPU
architectures, providing developers with related development environments that allow
programming in different programming languages, including Python.

At present, developers have valuable tools for programming software that uses GPUs
in contexts that aren't purely graphics-related. Among the main development environments
for heterogeneous computing, we have CUDA and OpenCL.

Let's now have a look at them in detail.

CUDA
CUDA is a proprietary hardware architecture of NVIDIA, which also gives its name to the
related development environment. Currently, CUDA has a pool of hundreds of thousands
of active developers, which demonstrates the growing interest that is
developing around this technology in the parallel programming environment.

CUDA offers extensions for the most commonly used programming languages, including
Python. The most well known CUDA Python extensions are as follows:

PyCUDA (https:/ / mathema. tician. de/software/ PyCUDA/)
Numba (http:/ /numba. pydata. org)

We'll use these extensions in the coming sections.

OpenCL
The second protagonist in parallel computing is OpenCL, which (unlike its NVIDIA
counterpart) is open standard and can be used not only with GPUs of different
manufacturers but also with microprocessors of different types.

However, OpenCL is a more complete and versatile solution as it does not boast the
maturity and simplicity of use that CUDA has.

The OpenCL Python extension is PyOpenCL (https:/ /mathema. tician. de/ software/
pyopencl/).

https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
http://numba.pydata.org
http://numba.pydata.org
http://numba.pydata.org
http://numba.pydata.org
http://numba.pydata.org
http://numba.pydata.org
http://numba.pydata.org
http://numba.pydata.org
http://numba.pydata.org
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/

Heterogeneous Computing Chapter 8

[254]

In the following sections, the CUDA and OpenCL programming models will be analyzed in
their Python extension and will be accompanied by some interesting application examples.

Dealing with PyCUDA
PyCUDA is a binding library that provides access to CUDA's Python API by Andreas
Klöckner. The main features include automatic cleanup, which is tied to an object's lifetime,
thus preventing leaks, convenient abstraction over modules and buffers, full access to the
driver, and built-in error handling. It is also very light.

The project is open source under the MIT license, the documentation is very clear, and
many different sources found online can provide help and support. The main purpose of
PyCUDA is to let a developer invoke CUDA with minimal abstraction from Python, and it
also supports CUDA metaprogramming and templatization.

Getting ready
Please follow the instructions on the Andreas Klöckner home page (https:/ /mathema.
tician.de/software/ pycuda/) to install PyCUDA.

The next programming example has a dual function:

The first is to verify that PyCUDA is properly installed.
The second is to read and to print the characteristics of the GPU cards.

How to do it...
Let's look at the steps, as follows:

With the first instruction, we import the Python driver (that is, pycuda.driver)1.
to the CUDA library installed on our PC:

import pycuda.driver as drv

Initialize CUDA. Note also that the following instruction must be called before2.
any other instruction in the pycuda.driver module:

drv.init()

https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/

Heterogeneous Computing Chapter 8

[255]

Enumerate the number of GPU cards on the PC:3.

print ("%d device(s) found." % drv.Device.count())

For each of the GPU cards present, print the model name, the computing4.
capability, and the total amount of memory on the device in kilobytes:

for ordinal i n range(drv.Device.count()):
 dev = drv.Device(ordinal)
 print ("Device #%d: %s" % (ordinal, dev.name())
 print ("Compute Capability: %d.%d"%
dev.compute_capability())
 print ("Total Memory: %s KB" % (dev.total_memory()//(1024)))

How it works...
The execution is pretty simple. In the first line of code, pycuda.driver is imported and
then initialized:

import pycuda.driver as drv
drv.init()

The pycuda.driver module exposes the driver level to the programming interface of
CUDA, which is more flexible than the CUDA C runtime-level programming interface, and
it has a few features that are not present in the runtime.

Then, it cycles into the drv.Device.count() function and, for each GPU card, the name
of the card and its main characteristics (computing capability and total memory) are
printed:

print ("Device #%d: %s" % (ordinal, dev.name()))
print ("Compute Capability: %d.%d" % dev.compute_capability())
print ("Total Memory: %s KB" % (dev.total_memory()//(1024)))

Execute the following code:

C:\>python dealingWithPycuda.py

When you've done so, the installed GPU will be shown on the screen, as in the following
example:

1 device(s) found.
Device #0: GeForce GT 240
Compute Capability: 1.2
Total Memory: 1048576 KB

Heterogeneous Computing Chapter 8

[256]

There's more...
The CUDA programming model (and consequently PyCUDA, which is a Python wrapper)
is implemented through specific extensions to the standard library of the C language. These
extensions have been created just like function calls in the standard C library, allowing a
simple approach to a heterogeneous programming model that includes the host and device
code. The management of the two logical parts is done by the nvcc compiler.

Here is a brief description of how this works:

Separate device code from the host code.1.
Invoke a default compiler (for example, GCC) to compile the host code.2.
Build the device code in binary form (.cubin objects) or in assembly form (PTX3.
objects):

PyCUDA execution model

All the preceding steps are performed by PyCUDA during execution, with an increase in
the application loading time compared to a CUDA application.

Heterogeneous Computing Chapter 8

[257]

See also
The CUDA programming guide is available here: https:/ /docs. nvidia. com/
CUDA/CUDA- c- programming- guide/

The PyCUDA documentation is available here: https:/ /documen. tician. de/
PyCUDA/

Heterogeneous programming with PyCUDA
The CUDA programming model (and, hence, that of PyCUDA) is designed for the joint
execution of a software application on a CPU and GPU, in order to perform the sequential
parts of the application on the CPU and those that can be parallelized on the GPU.
Unfortunately, the computer is not smart enough to understand how to distribute the
code autonomously, so it is up to the developer to indicate which parts should be run by
the CPU and by the GPU.

In fact, a CUDA application is composed of serial components, which are executed by the
system CPU or host, or by parallel components called kernels, which are executed by the
GPU or by the device instead.

A kernel is defined as a grid and can, in turn, be decomposed into blocks that are
sequentially assigned to the various multiprocessors, thus implementing coarse-grained
parallelism. Inside the blocks, there is the fundamental computational unit, the thread, with
a very fine parallel granularity. A thread can belong to only one block and is identified by a
unique index for the whole kernel. For convenience, there is the possibility of using two-
dimensional indexes for blocks and three-dimensional indexes for threads. The kernels are
executed sequentially between them. Blocks and threads, on the other hand, are executed in
parallel. The number of threads running (in parallel) depends on their organization in
blocks and on their requests in terms of resources, with respect to the resources available in
the device.

To visualize the concepts expressed previously, please refer to (Figure 5)
at https:/ / sites. google. com/site/ computationvisualization/
programming/ cuda/ article1.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://documen.tician.de/pycuda/
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1
https://sites.google.com/site/computationvisualization/programming/cuda/article1

Heterogeneous Computing Chapter 8

[258]

The blocks are designed to guarantee scalability. In fact, if you have an architecture with
two multiprocessors and another with four, then, a GPU application can be performed on
both architectures, obviously with different times and levels of parallelism.

The execution of a heterogeneous program according to the PyCUDA programming model
is thus structured as follows:

Allocate memory on the host.1.
Transfer data from the host memory to the device memory.2.
Run the device through the invocation of the kernel functions.3.
Transfer the results from the device memory to the host memory.4.
Release the memory allocated on the device.5.

The following diagram shows the execution flow of a program according to the PyCUDA
programming model:

PyCUDA programming model

In the next example, we will go through a concrete example of the programming
methodology to follow in order to build PyCUDA applications.

Heterogeneous Computing Chapter 8

[259]

How to do it...
In order to show the PyCUDA programming model, we consider the task of having to
double all the elements of a 5 × 5 matrix:

We import the libraries needed for the task we want to perform:1.

import PyCUDA.driver as CUDA
import PyCUDA.autoinit
from PyCUDA.compiler import SourceModule
import numpy

The numpy library, which we imported, allows us to construct the input to our2.
problem, that is, a 5 × 5 matrix whose values are chosen randomly:

a = numpy.random.randn(5,5)
a = a.astype(numpy.float32)

The matrix, thus built, must be copied from the memory of the host to the3.
memory of the device. For this, we allocate a memory space (a_gpu) on the
device that is necessary to contain matrix a. For this purpose, we use the
mem_alloc function, which has the allocated memory space as its subject. In
particular, the number of bytes of matrix a, as expressed by
the a.nbytes parameter, is as follows:

a_gpu = cuda.mem_alloc(a.nbytes)

After that, we can transfer the matrix from the host to the memory area, created4.
specifically on the device by using the memcpy_htod function:

cuda.memcpy_htod(a_gpu, a)

Inside the device, the doubleMatrix kernel function will operate. Its purpose5.
will be to multiply each element of the input matrix by 2. As you can see, the
syntax of the doubleMatrix function is C-like, while the SourceModule
statement is a real directive for the NVIDIA compiler (the nvcc compiler), which
creates a module that, in this case, consists of the doubleMatrix function only:

mod = SourceModule("""
 __global__ void doubles_matrix(float *a){
 int idx = threadIdx.x + threadIdx.y*4;
 a[idx] *= 2;}
 """)

Heterogeneous Computing Chapter 8

[260]

With the func parameter, we identify the doubleMatrix function, which is6.
contained in the mod module:

func = mod.get_function("doubles_matrix")

Finally, we run the kernel function. In order to successfully execute a kernel7.
function on the device, the CUDA user must specify the input for the kernel and
the size of the execution thread block. In the following case, the input is the
a_gpu matrix that was previously copied to the device, while the dimension of
the thread block is (5,5,1):

func(a_gpu, block=(5,5,1))

Therefore, we allocate an area of memory of size equal to that of the input matrix8.
a:

a_doubled = numpy.empty_like(a)

Then, we copy the contents of the memory area allocated to the device—that is,9.
the a_gpu matrix—to the previously defined memory area, a_doubled:

cuda.memcpy_dtoh(a_doubled, a_gpu)

Finally, we print the contents of the input matrix a and the output matrix in 10.
order to verify the quality of the implementation:

print ("ORIGINAL MATRIX")
print (a)
print ("DOUBLED MATRIX AFTER PyCUDA EXECUTION")
print (a_doubled)

How it works...
Let's start with looking at which libraries are imported for this example:

import PyCUDA.driver as CUDA
import PyCUDA.autoinit
from PyCUDA.compiler import SourceModule

In particular, the autoinit import automatically identifies which GPU on our system is
available for execution, while SourceModule is the directive for the compiler of NVIDIA
(nvcc) that allows us to identify the objects that must be compiled and uploaded to the
device.

Heterogeneous Computing Chapter 8

[261]

Then, we build the 5 × 5 input matrix by using the numpy library:

import numpy
a = numpy.random.randn(5,5)

In this case, the elements in the matrix are converted to single-precision mode (since the
graphics card on which this example is executed only supports single precision):

a = a.astype(numpy.float32)

Then, we copy the array from the host to the device, using the following two operations:

a_gpu = CUDA.mem_alloc(a.nbytes)
CUDA.memcpy_htod(a_gpu, a)

Note that the device and host memory may never communicate during the execution of a
kernel function. For this reason, in order to parallel execute the kernel function on the
device, all input data relating to the kernel function must also be present in the memory of
the device.

It should also be noted that the a_gpu matrix is linearized, that is, it is one-dimensional,
and therefore we must manage it as such.

Moreover, all these operations do not require kernel invocation. This means that they are
made directly by the host.

The SourceModule entity allows the definition of the doubleMatrix kernel
function. __global__, which is an nvcc directive, indicates that the doubleMatrix
function will be processed by the device:

mod = SourceModule("""
 __global__ void doubleMatrix(float *a)

Let's consider the kernel's body. The idx parameter is the matrix index, which is identified
by the threadIdx.x and threadIdx.y thread coordinates:

 int idx = threadIdx.x + threadIdx.y*4;
 a[idx] *= 2;

Then, mod.get_function("doubleMatrix") returns an identifier to the func parameter:

func = mod.get_function("doubleMatrix ")

Heterogeneous Computing Chapter 8

[262]

In order to execute the kernel, we need to configure the execution context. This means
setting the three-dimensional structure of the threads that belong to the block grid by using
the block parameter inside the func call:

func(a_gpu, block = (5, 5, 1))

block = (5, 5, 1) tells us that we are calling a kernel function with the a_gpu
linearized input matrix and a single thread block of size 5 (that is, 5 threads) in the x-
direction, 5 threads in the y-direction, and 1 thread in the z-direction, which makes 16
threads in total. Note that each thread executes the same kernel code (25 threads in total).

After the computation in the GPU device, we use an array to store the results:

a_doubled = numpy.empty_like(a)
CUDA.memcpy_dtoh(a_doubled, a_gpu)

To run the example, type the following on Command Prompt:

C:\>python heterogenousPycuda.py

The output should be like this:

ORIGINAL MATRIX
[[-0.59975582 1.93627465 0.65337795 0.13205571 -0.46468592]
[0.01441949 1.40946579 0.5343408 -0.46614054 -0.31727529]
[-0.06868593 1.21149373 -0.6035406 -1.29117763 0.47762445]
[0.36176383 -1.443097 1.21592784 -1.04906416 -1.18935871]
[-0.06960868 -1.44647694 -1.22041082 1.17092752 0.3686313]]

DOUBLED MATRIX AFTER PyCUDA EXECUTION
[[-1.19951165 3.8725493 1.3067559 0.26411143 -0.92937183]
[0.02883899 2.81893158 1.0686816 -0.93228108 -0.63455057]
[-0.13737187 2.42298746 -1.2070812 -2.58235526 0.95524889]
[0.72352767 -2.886194 2.43185568 -2.09812832 -2.37871742]
[-0.13921736 -2.89295388 -2.44082164 2.34185504 0.73726263]]

There's more...
The key feature of CUDA that makes this programming model substantially different from
other parallel models (normally used on CPUs) is that in order to be efficient, it requires
thousands of threads to be active. This is made possible by the typical structure of GPUs,
which use light threads and also allow the creation and modification of execution contexts
in a very fast and efficient way.

Heterogeneous Computing Chapter 8

[263]

Note that the scheduling of threads is directly linked to the GPU architecture and its
intrinsic parallelism. In fact, a block of threads is assigned to a single SM. Here, the threads
are further divided into groups, called warps. The threads that belong to the same warp are
managed by the warp scheduler. To take full advantage of the inherent parallelism of the SM,
the threads of the same warp must execute the same instruction. If this condition does not
occur, then we speak of threads divergence.

See also
The complete tutorial on using PyCUDA is available at the following site:
https:// documen. tician. de/ pycuda/ tutorial. html.
To install PyCUDA on Windows 10, take a look at the following link: https:/ /
github.com/ kdkoadd/ Win10- PyCUDA- Install.

Implementing memory management with
PyCUDA
PyCUDA programs should respect the rules dictated by the structure and the internal
organization of SM that impose constraints on thread performances. In fact, the knowledge
and the correct use of various types of memory that the GPU makes available are
fundamental in order to achieve maximum efficiency. In those GPU cards, enabled for
CUDA use, there are four types of memory, which are as follows:

Registers: Each thread is assigned a memory register which only the assigned
thread can access, even if the threads belong to the same block.
Shared memory: Each block has its own shared memory between the threads
that belong to it. Even this memory is extremely fast.
Constant memory: All threads in a grid have constant access to the memory, but
can only be accessed in reading. The data present in it persists for the entire
duration of the application.

https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://documen.tician.de/pycuda/tutorial.html
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install
https://github.com/kdkoadd/Win10-PyCUDA-Install

Heterogeneous Computing Chapter 8

[264]

Global memory: All the threads of the grid, and therefore all the kernels, have
access to the global memory. Moreover, data persistence is exactly like a constant
memory:

GPU memory model

Getting ready
For best performance, a PyCUDA program must, therefore, make the most of every type of
memory. In particular, it must make the most of shared memory, minimizing access to
memory on a global level.

Heterogeneous Computing Chapter 8

[265]

To do this, the problem domain is typically subdivided so that a single block of threads is
able to execute its processing in a closed subset of data. In this way, the threads operating
on the single block will all work together on the same shared memory area, optimizing
access.

The basic steps for each thread are as follows:

Load data from global memory to shared memory.1.
Synchronize all threads of the block so that everyone can read safety positions and2.
shared memory filled by other threads.
Process the data of the shared memory. Making a new synchronization is3.
necessary to ensure that the shared memory has been updated with the results.
Write the results in global memory.4.

To clarify this approach, in the following section, we will present an example based on the
calculation of the product of two matrices.

How to do it...
The following code fragment shows the calculation of the product of two matrices, M×N, in
the standard method, which is based on a sequential approach. Each element of the output
matrix, P, is obtained by taking a row element from matrix M, and a column element from
matrix N:

void SequentialMatrixMultiplication(float*M,float *N,float *P, int width){
 for (int i=0; i< width; ++i)
 for(int j=0;j < width; ++j) {
 float sum = 0;
 for (int k = 0 ; k < width; ++k) {
 float a = M[I * width + k];
 float b = N[k * width + j];
 sum += a * b;
 }
 P[I * width + j] = sum;
 }
}
P[I * width + j] = sum;

Heterogeneous Computing Chapter 8

[266]

In this case, if each thread had been given the task of calculating each element of the matrix,
then access to the memory would have dominated the execution time of the algorithm.

What we can do is rely on a block of threads to calculate one output submatrix at a time. In
this way, the threads that access the same memory block cooperate to optimize accesses,
thereby minimizing the total calculation time:

The first step is to load all the necessary modules to implement the algorithm:1.

import numpy as np
from pycuda import driver, compiler, gpuarray, tools

Then, initialize the GPU device:2.

import pycuda.autoinit

We implement kernel_code_template, which implements the product of two3.
matrices that are respectively indicated with a and b, while the resulting matrix
is indicated with the parameter c. Note that the MATRIX_SIZE parameter will be
defined in the next step:

kernel_code_template = """
__global__ void MatrixMulKernel(float *a, float *b, float *c)
{
 int tx = threadIdx.x;
 int ty = threadIdx.y;
 float Pvalue = 0;
 for (int k = 0; k < %(MATRIX_SIZE)s; ++k) {
 float Aelement = a[ty * %(MATRIX_SIZE)s + k];
 float Belement = b[k * %(MATRIX_SIZE)s + tx];
 Pvalue += Aelement * Belement;
 }
 c[ty * %(MATRIX_SIZE)s + tx] = Pvalue;
}"""

The following parameter will be used to set the dimensions of the matrices. In4.
this case, the size is 5 × 5:

MATRIX_SIZE = 5

Heterogeneous Computing Chapter 8

[267]

We define the two input matrices, a_cpu and b_cpu, that will contain random5.
floating-point values:

a_cpu = np.random.randn(MATRIX_SIZE,
MATRIX_SIZE).astype(np.float32)
b_cpu = np.random.randn(MATRIX_SIZE,
MATRIX_SIZE).astype(np.float32)

Then, we calculate the product of the two matrices, a and b, on the host device:6.

c_cpu = np.dot(a_cpu, b_cpu)

We allocate memory areas on the device (GPU), equal in size to the input7.
matrices:

a_gpu = gpuarray.to_gpu(a_cpu)
b_gpu = gpuarray.to_gpu(b_cpu)

We allocate a memory area on the GPU, equal in size to the output matrix8.
resulting from the product of the two matrices. In this case, the resulting matrix,
c_gpu, will have a size of 5 × 5:

c_gpu = gpuarray.empty((MATRIX_SIZE, MATRIX_SIZE), np.float32)

The following kernel_code redefines kernel_code_template, but with the9.
matrix_size parameter set:

kernel_code = kernel_code_template % {
 'MATRIX_SIZE': MATRIX_SIZE}

The SourceModule directive tells nvcc (NVIDIA CUDA Compiler) that it will10.
have to create a module—that is, a collection of functions—containing
the previously defined kernel_code:

mod = compiler.SourceModule(kernel_code)

Finally, we take the MatrixMulKernel function from the module, mod, to which11.
we give the name matrixmul:

matrixmul = mod.get_function("MatrixMulKernel")

Heterogeneous Computing Chapter 8

[268]

We execute the product between two matrices, a_gpu and b_gpu, resulting in the12.
c_gpu matrix. The size of the thread block is defined as MATRIX_SIZE,
MATRIX_SIZE, 1:

matrixmul(
 a_gpu, b_gpu,
 c_gpu,
 block = (MATRIX_SIZE, MATRIX_SIZE, 1))

Print the input matrices:13.

print ("-" * 80)
print ("Matrix A (GPU):")
print (a_gpu.get())
print ("-" * 80)
print ("Matrix B (GPU):")
print (b_gpu.get())
print ("-" * 80)
print ("Matrix C (GPU):")
print (c_gpu.get())

To check the validity of the calculation performed on the GPU, we compare the14.
results of the two implementations, which are the one performed on the host
device (CPU) and the one performed on the device (GPU). To do this, we use the
numpy allclose directive, which verifies that two element-wise arrays are
equal within a tolerance equal to 1e-05:

np.allclose(c_cpu, c_gpu.get())

How it works...
Let's consider the PyCUDA programming workflow. Let's prepare the input matrix, the
output matrix, and where to store the results:

MATRIX_SIZE = 5
a_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
b_cpu = np.random.randn(MATRIX_SIZE, MATRIX_SIZE).astype(np.float32)
c_cpu = np.dot(a_cpu, b_cpu)

Heterogeneous Computing Chapter 8

[269]

Then, we transfer these matrices to the GPU device by using the gpuarray.to_gpu()
PyCUDA function:

a_gpu = gpuarray.to_gpu(a_cpu)
b_gpu = gpuarray.to_gpu(b_cpu)
c_gpu = gpuarray.empty((MATRIX_SIZE, MATRIX_SIZE), np.float32)

The core of the algorithm is the following kernel function. Let's remark that the
__global__ keyword specifies that this function is a kernel function, which means that it
will be executed by the device (GPU) following a call from the host code (CPU):

__global__ void MatrixMulKernel(float *a, float *b, float *c){
 int tx = threadIdx.x;
 int ty = threadIdx.y;
 float Pvalue = 0;
 for (int k = 0; k < %(MATRIX_SIZE)s; ++k) {
 float Aelement = a[ty * %(MATRIX_SIZE)s + k];
 float Belement = b[k * %(MATRIX_SIZE)s + tx];
 Pvalue += Aelement * Belement;}
 c[ty * %(MATRIX_SIZE)s + tx] = Pvalue;
}

threadIdx.x and threadIdy.y are coordinates that allow the identification of the threads
in the grid of two-dimensional blocks. Note that the threads within the grid block execute
the same kernel code but on different pieces of data. If we compare the parallel version
with the sequential one, then we immediately notice that the cycle indexes, i and j, have
been replaced by the threadIdx.x and threadIdx.y indexes.

This means that in the parallel version, we will have only one iteration of the cycle. In fact,
the MatrixMulKernel kernel will be executed on a grid of dimensions of 5 × 5 parallel
threads.

Heterogeneous Computing Chapter 8

[270]

This condition is expressed in the following diagram:

Grid and block of thread organization for the example

Heterogeneous Computing Chapter 8

[271]

Then, we verify the product computation just by comparing the two resulting matrices:

np.allclose(c_cpu, c_gpu.get())

The output is as follows:

C:\>python memManagementPycuda.py

Matrix A (GPU):
[[0.90780383 -0.4782407 0.23222363 -0.63184392 1.05509627]
 [-1.27266967 -1.02834761 -0.15528528 -0.09468858 1.037099]
 [-0.18135822 -0.69884419 0.29881889 -1.15969539 1.21021318]
 [0.20939326 -0.27155793 -0.57454145 0.1466181 1.84723163]
 [1.33780348 -0.42343542 -0.50257754 -0.73388749 -1.883829]]

Matrix B (GPU):
[[0.04523897 0.99969769 -1.04473436 1.28909719 1.10332143]
 [-0.08900332 -1.3893919 0.06948703 -0.25977209 -0.49602833]
 [-0.6463753 -1.4424541 -0.81715286 0.67685211 -0.94934392]
 [0.4485206 -0.77086055 -0.16582981 0.08478995 1.26223004]
 [-0.79841441 -0.16199949 -0.35969591 -0.46809086 0.20455229]]

Matrix C (GPU):
[[-1.19226956 1.55315971 -1.44614291 0.90420711 0.43665022]
 [-0.73617989 0.28546685 1.02769876 -1.97204924 -0.65403283]
 [-1.62555301 1.05654192 -0.34626681 -0.51481217 -1.35338223]
 [-1.0040834 1.00310731 -0.4568972 -0.90064859 1.47408712]
 [1.59797418 3.52156591 -0.21708387 2.31396151 0.85150564]]

TRUE

There's more...
The data allocated in shared memory has limited visibility in the single-threaded block. It is
easy to see that the PyCUDA programming model adapts to specific classes of applications.

In particular, the features that these applications must present concern the presence of
many mathematical operations, with a high degree of data parallelism (that is, the same
sequence of operations being repeated on large amounts of data).

The application fields that possess these characteristics all belong to the following sciences:
cryptography, computational chemistry, and image and signal analysis.

Heterogeneous Computing Chapter 8

[272]

See also
More examples of using PyCUDA can be found at https:/ /github. com/
zamorays/ miniCursoPycuda.

Introducing PyOpenCL
PyOpenCL is a sister project to PyCUDA. It is a binding library that provides full access to
OpenCL's API from Python and is also by Andreas Klöckner. It features many of the same
concepts as PyCUDA, including cleanup for out-of-scope objects, partial abstraction over
data structures, and error handling, all with minimal overhead. The project is available
under the MIT license; its documentation is very good and plenty of guides and tutorials
can be found online.

The main focus of PyOpenCL is to provide a lightweight connection between Python and
OpenCL, but it also includes support for templates and metaprograms. The flow of a
PyOpenCL program is almost exactly the same as a C or C++ program for OpenCL. The
host program prepares the call of the device program, launches it, and then waits for the
result.

Getting ready
The main reference for the PyOpenCL installation is the Andreas Klöckner home page:
https://mathema. tician. de/ software/ pyopencl/ .

If you are using Anaconda, then it is advisable to perform the following steps:

Install the latest Anaconda distribution with Python 3.7 from the following1.
link: https:/ / www. anaconda. com/distribution/ #download- section. For this
section, the Anaconda 2019.07 for Windows Installer has been installed.
Get the PyOpenCL prebuilt binary from Christoph Gohlke from this link:2.
https:// www. lfd. uci. edu/ ~gohlke/ pythonlibs/ . Select the right combination
of OS and CPython versions. Here, we use pyopencl-2019.1+cl12-cp37-
cp37m-win_amd64.whl.

https://github.com/zamorays/miniCursoPycuda
https://github.com/zamorays/miniCursoPycuda
https://github.com/zamorays/miniCursoPycuda
https://github.com/zamorays/miniCursoPycuda
https://github.com/zamorays/miniCursoPycuda
https://github.com/zamorays/miniCursoPycuda
https://github.com/zamorays/miniCursoPycuda
https://github.com/zamorays/miniCursoPycuda
https://github.com/zamorays/miniCursoPycuda
https://github.com/zamorays/miniCursoPycuda
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://mathema.tician.de/software/pyopencl/
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/

Heterogeneous Computing Chapter 8

[273]

Use pip to install the previous package. Simply type this in your Anaconda3.
Prompt:

(base) C:\> pip install <directory>\pyopencl-2019.1+cl12-cp37-
cp37m-win_amd64.whl

<directory> is the folder where the PyOpenCL package is located.

Moreover, the following notation indicates that we are operating on the Anaconda Prompt:

(base) C:\>

How to do it...
In the following example, we will use a function of PyOpenCL that allows us to enumerate
the features of the GPU on which it will operate.

The code we implement is very simple and logical:

In the first step, we import the pyopencl library:1.

import pyopencl as cl

We build a function whose output will provide us with the characteristics of the2.
GPU hardware in use:

def print_device_info() :
 print('\n' + '=' * 60 + '\nOpenCL Platforms and Devices')
 for platform in cl.get_platforms():
 print('=' * 60)
 print('Platform - Name: ' + platform.name)
 print('Platform - Vendor: ' + platform.vendor)
 print('Platform - Version: ' + platform.version)
 print('Platform - Profile: ' + platform.profile)

 for device in platform.get_devices():
 print(' ' + '-' * 56)
 print(' Device - Name: ' \
 + device.name)
 print(' Device - Type: ' \
 + cl.device_type.to_string(device.type))
 print(' Device - Max Clock Speed: {0} Mhz'\
 .format(device.max_clock_frequency))
 print(' Device - Compute Units: {0}'\
 .format(device.max_compute_units))
 print(' Device - Local Memory: {0:.0f} KB'\

Heterogeneous Computing Chapter 8

[274]

 .format(device.local_mem_size/1024.0))
 print(' Device - Constant Memory: {0:.0f} KB'\
 .format(device.max_constant_buffer_size/1024.0))
 print(' Device - Global Memory: {0:.0f} GB'\
 .format(device.global_mem_size/1073741824.0))
 print(' Device - Max Buffer/Image Size: {0:.0f} MB'\
 .format(device.max_mem_alloc_size/1048576.0))
 print(' Device - Max Work Group Size: {0:.0f}'\
 .format(device.max_work_group_size))
 print('\n')

So, we implement the main function, which calls the previously3.
implemented print_device_info function:

if __name__ == "__main__":
 print_device_info()

How it works...
The following command is used to import the pyopencl library:

import pyopencl as cl

This allows us to use the get_platforms method, which returns a list of platform
instances, that is, a list of devices in the system:

for platform in cl.get_platforms():

Then, for each device found, the following main features are shown:

Name and device type
Max clock speed
Compute units
Local/constant/global memory

The output for this example is as follows:

(base) C:\>python deviceInfoPyopencl.py

===
OpenCL Platforms and Devices
==
Platform - Name: NVIDIA CUDA
Platform - Vendor: NVIDIA Corporation
Platform - Version: OpenCL 1.2 CUDA 10.1.152

Heterogeneous Computing Chapter 8

[275]

Platform - Profile: FULL_PROFILE
 --
 Device - Name: GeForce 840M
 Device - Type: GPU
 Device - Max Clock Speed: 1124 Mhz
 Device - Compute Units: 3
 Device - Local Memory: 48 KB
 Device - Constant Memory: 64 KB
 Device - Global Memory: 2 GB
 Device - Max Buffer/Image Size: 512 MB
 Device - Max Work Group Size: 1024
==
Platform - Name: Intel(R) OpenCL
Platform - Vendor: Intel(R) Corporation
Platform - Version: OpenCL 2.0
Platform - Profile: FULL_PROFILE
 --
 Device - Name: Intel(R) HD Graphics 5500
 Device - Type: GPU
 Device - Max Clock Speed: 950 Mhz
 Device - Compute Units: 24
 Device - Local Memory: 64 KB
 Device - Constant Memory: 64 KB
 Device - Global Memory: 3 GB
 Device - Max Buffer/Image Size: 808 MB
 Device - Max Work Group Size: 256
 --
 Device - Name: Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz
 Device - Type: CPU
 Device - Max Clock Speed: 2400 Mhz
 Device - Compute Units: 4
 Device - Local Memory: 32 KB
 Device - Constant Memory: 128 KB
 Device - Global Memory: 8 GB
 Device - Max Buffer/Image Size: 2026 MB
 Device - Max Work Group Size: 8192

There's more...
OpenCL is currently managed by the Khronos Group, a non-profit consortium of
companies that collaborate in defining the specifications of this (and many other) standards
and compliance parameters for the creation of OpenCL-specific drivers for each type of
platform.

Heterogeneous Computing Chapter 8

[276]

These drivers also provide functions for compiling programs that are written in the kernel
language: these are converted into programs in some form of intermediate language that is
usually vendor-specific, and then executed on the reference architectures.

More info on OpenCL can be found at the following link: https:/ / www.khronos. org/
registry/OpenCL/ .

See also
PyOpenCL documentation is available here: https:/ / documen. tician. de/
pyopencl/ .
One of the best introductions to PyOpenCL, even if somewhat dated, can be
found at the following link: http:/ /www. drdobbs. com/ open- source/ easy-
opencl-with- python/ 240162614.

Building applications with PyOpenCL
The first step in the construction of a program for PyOpenCL is the coding of the host
application. This is performed on the CPU and has the task of managing the possible
execution of the kernel on the GPU card (that is, the device).

A kernel is a basic unit of executable code, similar to a C function. It can be data-parallel or
task-parallel. However, the cornerstone of PyOpenCL is the exploitation of parallelism.

A fundamental concept is a program, which is a collection of kernels and other functions,
analogous to dynamic libraries. So, we can group instructions in a kernel and group
different kernels into a program.

Programs can be called from applications. We have the execution queues that indicate the
order in which the kernels are executed. However, in some cases, these can be launched
without following the original order.

We can finally list the fundamental elements for developing an application with
PyOpenCL:

Device: This identifies the hardware in which the kernel code is to be executed.
Note that the PyOpenCL application can be run on both CPU and GPU boards
(as well as PyCUDA) but also on embedded devices such as Field-
Programmable Gate Arrays (FPGAs).

https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://www.khronos.org/registry/OpenCL/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
https://documen.tician.de/pyopencl/
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614
http://www.drdobbs.com/open-source/easy-opencl-with-python/240162614

Heterogeneous Computing Chapter 8

[277]

Program: This is a group of kernels that has the task of selecting which kernel
must be run on the device.
Kernel: This is the code to execute on the device. A kernel is a C-like function,
which means it can be compiled on any device that supports PyOpenCL drivers.
Command queue: This orders the execution of kernels on the device.
Context: This is a group of devices that allows devices to receive kernels and
transfer data.

The following diagram shows how this data structure can work in a host application:

PyOpenCL programming model

Again, we observe that a program can contain more functions to run on the device and that
each kernel encapsulates only a single function from the program.

Heterogeneous Computing Chapter 8

[278]

How to do it...
In the following example, we show the basic steps to build an application with PyOpenCL:
the task to be performed is the sum of two vectors. In order to have a readable output, we'll
consider two vectors that each have 100 elements: each i-th element of the resulting vector
will be equal to the sum of the i-th element of vector_a, plus the i-th element of vector_b:

Let's start by importing all the necessary libraries:1.

import numpy as np
import pyopencl as cl
import numpy.linalg as la

We define the size of the vectors to be added, as follows:2.

vector_dimension = 100

Here, the input vectors, vector_a and vector_b, are defined:3.

vector_a =
np.random.randint(vector_dimension,size=vector_dimension)
vector_b =
np.random.randint(vector_dimension,size=vector_dimension)

In sequence, we define platform, device, context, and queue:4.

platform = cl.get_platforms()[1]
device = platform.get_devices()[0]
context = cl.Context([device])
queue = cl.CommandQueue(context)

Now, it's time to organize the memory areas that will contain the input vectors:5.

mf = cl.mem_flags
a_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,\
hostbuf=vector_a)
b_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,\
hostbuf=vector_b)

Finally, we build the application kernel by using the Program method:6.

program = cl.Program(context, """
__kernel void vectorSum(__global const int *a_g, __global const int
*b_g, __global int *res_g) {
 int gid = get_global_id(0);
 res_g[gid] = a_g[gid] + b_g[gid];
}
""").build()

Heterogeneous Computing Chapter 8

[279]

Then, we allocate the memory of the resulting matrix:7.

res_g = cl.Buffer(context, mf.WRITE_ONLY, vector_a.nbytes)

Then, we call the kernel function:8.

program.vectorSum(queue, vector_a.shape, None, a_g, b_g, res_g)

The memory space used to store the result is allocated in the host memory area9.
(res_np):

res_np = np.empty_like(vector_a)

Copy the result of the computation into the memory area created:10.

cl._enqueue_copy(queue, res_np, res_g)

Finally, we print the results:11.

print ("PyOPENCL SUM OF TWO VECTORS")
print ("Platform Selected = %s" %platform.name)
print ("Device Selected = %s" %device.name)
print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")
print (vector_a)
print ("INPUT VECTOR B")
print (vector_b)
print ("OUTPUT VECTOR RESULT A + B ")
print (res_np)

Then, we perform a simple check in order to verify that the sum operation is12.
correct:

assert(la.norm(res_np - (vector_a + vector_b))) < 1e-5

How it works...
In the following lines, after the relevant import, we define the input vectors:

vector_dimension = 100
vector_a = np.random.randint(vector_dimension, size= vector_dimension)
vector_b = np.random.randint(vector_dimension, size= vector_dimension)

Heterogeneous Computing Chapter 8

[280]

Each vector contains 100 integer items, which are randomly selected through the numpy
function:

np.random.randint(max integer , size of the vector)

Then, we select the platform to achieve the computation by using the
get_platform() method:

platform = cl.get_platforms()[1]

Then, select the corresponding device. Here, platform.get_devices()[0] corresponds
to the Intel(R) HD Graphics 5500 graphics card:

device = platform.get_devices()[0]

In the following steps, the context and the queue are defined; PyOpenCL provides the
method context (device selected) and queue (context selected):

context = cl.Context([device])
queue = cl.CommandQueue(context)

In order to perform the computation in the selected device, the input vector is copied to the
device's memory:

mf = cl.mem_flags
a_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,\
hostbuf=vector_a)
b_g = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR,\
 hostbuf=vector_b)

Then, we prepare the buffer for the resulting vector:

res_g = cl.Buffer(context, mf.WRITE_ONLY, vector_a.nbytes)

Here, the kernel code is defined:

program = cl.Program(context, """
__kernel void vectorSum(__global const int *a_g, __global const int *b_g,
__global int *res_g) {
 int gid = get_global_id(0);
 res_g[gid] = a_g[gid] + b_g[gid];}
""").build()

Heterogeneous Computing Chapter 8

[281]

vectorSum is the name of the kernel, and the parameter list defines the data types of the
input arguments and output data type (both are integer vectors). Inside the kernel body, the
sum of two vectors is defined in the following steps:

Initialize the vector's index: int gid = get_global_id(0).1.
Sum the vector's components: res_g[gid] = a_g[gid] + b_g[gid].2.

In OpenCL (hence, in PyOpenCL), the buffers are attached to a context (https:/ /documen.
tician.de/pyopencl/ runtime. html#pyopencl. Context), which are moved to a device once
the buffer is used on that device.

Finally, we execute vectorSum in the device:

program.vectorSum(queue, vector_a.shape, None, a_g, b_g, res_g)

To check the result, we use the assert statement. This tests the result and triggers an error
if the condition is false:

assert(la.norm(res_np - (vector_a + vector_b))) < 1e-5

The output should be as follows:

(base) C:\>python vectorSumPyopencl.py

PyOPENCL SUM OF TWO VECTORS
Platform Selected = Intel(R) OpenCL
Device Selected = Intel(R) HD Graphics 5500
VECTOR LENGTH = 100
INPUT VECTOR A

[45 46 0 97 96 98 83 7 51 21 72 70 59 65 79 92 98 24 56 6 70 64 59 0
 96 78 15 21 4 89 14 66 53 20 34 64 48 20 8 53 82 66 19 53 11 17 39 11
 89 97 51 53 7 4 92 82 90 78 31 18 72 52 44 17 98 3 36 69 25 87 86 68
 85 16 58 4 57 64 97 11 81 36 37 21 51 22 17 6 66 12 80 50 77 94 6 70
 21 86 80 69]

INPUT VECTOR B
[25 8 76 57 86 96 58 89 26 31 28 92 67 47 72 64 13 93 96 91 91 36 1 75
 2 40 60 49 24 40 23 35 80 60 61 27 82 38 66 81 95 79 96 23 73 19 5 43
 2 47 17 88 46 76 64 82 31 73 43 17 35 28 48 89 8 61 23 17 56 7 84 36
 95 60 34 9 4 5 74 59 6 89 84 98 25 50 38 2 3 43 64 96 47 79 12 82
 72 0 78 5]

OUTPUT VECTOR RESULT A + B
[70 54 76 154 182 194 141 96 77 52 100 162 126 112 151 156 111 117 152
 97 161 100 60 75 98 118 75 70 28 129 37 101 133 80 95 91 130 58 74 134
 177 145 115 76 84 36 44 54 91 144 68 141 53 80 156 164 121 151 74 35

https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context
https://documen.tician.de/pyopencl/runtime.html#pyopencl.Context

Heterogeneous Computing Chapter 8

[282]

 107 80 92 106 106 64 59 86 81 94 170 104 80 76 92 13 61 69 171 70 87
 125 121 119 76 72 55 8 69 55 144 146 124 173 18 152 93 86 158 74]

There's more...
In this section, we have seen that the PyOpenCL execution model, like PyCUDA, involves a
host processor that manages one or more heterogeneous devices. In particular, each
PyOpenCL command is sent to the devices from the host in the form of source code that is
defined through the kernel function.

The source code is then loaded into a program object for the reference architecture, the
program is compiled into the reference architecture, and the kernel object that is relative to
the program is created.

A kernel object can be executed in a variable number of workgroups, creating an n-
dimensional computation matrix that allows it to effectively subdivide the workload for a
problem in n-dimensions (1, 2, or 3) in each workgroup. In turn, they are composed of a
number of work items that work in parallel.

Balancing the workload for each workgroup based on the parallel computing capability of a
device is one of the critical parameters for achieving good application performance.

A wrong balancing of the workload, together with the specific characteristics of each device
(such as transfer latency, throughput, and bandwidth), can lead to a substantial loss of
performance or compromise the portability of the code when executed without considering
any system of dynamic acquisition of information in terms of device calculation capacities.

However, the accurate use of these technologies allows us to reach high levels of
performance by combining the results of the calculation of different computational units.

See also
More on PyOpenCL programming can be found at https:/ /pydanny- event- notes.
readthedocs.io/en/ latest/ PyConPL2012/ async_ via_ pyopencl. html.

https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html
https://pydanny-event-notes.readthedocs.io/en/latest/PyConPL2012/async_via_pyopencl.html

Heterogeneous Computing Chapter 8

[283]

Element-wise expressions with PyOpenCL
The element-wise functionality allows us to evaluate kernels on complex expressions
(which are made of more operands) into a single computational pass.

Getting started
The ElementwiseKernel (context, argument, operation, name,
optional_parameters) method is implemented in PyOpenCL to handle element-wise
expressions.

The main parameters are as follows:

context is the device or the group of devices to which the element-wise
operation will be executed.
argument is a C-like argument list of all the parameters involved in the
computation.
operation is a string that represents the operation to perform on the argument
list.
name is the kernel's name that is associated with Elementwisekernel.
optional_parameters is not important in this recipe.

How to do it...
Here, we consider the task of adding two integer vectors again:

Start importing the relevant libraries:1.

import pyopencl as cl
import pyopencl.array as cl_array
import numpy as np

Define the context element (context) and the command queue (queue) :2.

context = cl.create_some_context()
queue = cl.CommandQueue(context)

Heterogeneous Computing Chapter 8

[284]

Here, we set the vector dimension and the space allocation for the input and3.
output vectors:

vector_dim = 100
vector_a=cl_array.to_device(queue,np.random.randint(100,\
size=vector_dim))
vector_b = cl_array.to_device(queue,np.random.randint(100,\
size=vector_dim))
result_vector = cl_array.empty_like(vector_a)

We set elementwiseSum as the application of ElementwiseKernel, and then4.
set it to a set of arguments that define the operations to be applied to the input
vectors:

elementwiseSum = cl.elementwise.ElementwiseKernel(context, "int
*a,\
int *b, int *c", "c[i] = a[i] + b[i]", "sum")
elementwiseSum(vector_a, vector_b, result_vector)

Finally, we print the result:5.

print ("PyOpenCL ELEMENTWISE SUM OF TWO VECTORS")
print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")
print (vector_a)
print ("INPUT VECTOR B")
print (vector_b)
print ("OUTPUT VECTOR RESULT A + B ")
print (result_vector)

How it works...
In the first lines of the script, we import all the requested modules.

In order to initialize the context, we use the cl.create_some_context() method. This
asks the user which context must be used to perform the calculation:

Choose platform:
[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x1c0a25aecf0>
[1] <pyopencl.Platform 'Intel(R) OpenCL' at 0x1c0a2608400>

Heterogeneous Computing Chapter 8

[285]

Then, we need to instantiate the queue that will receive ElementwiseKernel:

queue = cl.CommandQueue(context)

Input and output vectors are instantiated. The input vectors, vector_a and vector_b, are
integer vectors of random values obtained using the random.randint NumPy function.
These vectors are then copied into the device by using the PyOpenCL statement:

cl.array_to_device(queue,array)

In ElementwiseKernel, an object is created:

elementwiseSum = cl.elementwise.ElementwiseKernel(context,\
 "int *a, int *b, int *c", "c[i] = a[i] + b[i]", "sum")

Note that all the arguments are in the form of a string formatted as a C
argument list (they are all integers).

The operation is a C-like code snippet that carries out the operation, that
is, the sum of the input vector elements.
The name of the function with which the kernel will be compiled is sum.

Finally, we call the elementwiseSum function with the arguments defined previously:

elementwiseSum(vector_a, vector_b, result_vector)

The example ends by printing the input vectors and the result obtained. The output looks
like this:

(base) C:\>python elementwisePyopencl.py

Choose platform:
[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x1c0a25aecf0>
[1] <pyopencl.Platform 'Intel(R) OpenCL' at 0x1c0a2608400>
Choice [0]:1

Choose device(s):
[0] <pyopencl.Device 'Intel(R) HD Graphics 5500' on 'Intel(R) OpenCL' at
0x1c0a1640db0>
[1] <pyopencl.Device 'Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz' on
'Intel(R) OpenCL' at 0x1c0a15e53f0>
Choice, comma-separated [0]:0
PyOpenCL ELEMENTWISE SUM OF TWO VECTORS
VECTOR LENGTH = 100
INPUT VECTOR A
[24 64 73 37 40 4 41 85 19 90 32 51 6 89 98 56 97 53 34 91 82 89 97 2
 54 65 90 90 91 75 30 8 62 94 63 69 31 99 8 18 28 7 81 72 14 53 91 80

Heterogeneous Computing Chapter 8

[286]

 76 39 8 47 25 45 26 56 23 47 41 18 89 17 82 84 10 75 56 89 71 56 66 61
 58 54 27 88 16 20 9 61 68 63 74 84 18 82 67 30 15 25 25 3 93 36 24 27
 70 5 78 15]

INPUT VECTOR B
[49 18 69 43 51 72 37 50 79 34 97 49 51 29 89 81 33 7 47 93 70 52 63 90
 99 95 58 33 41 70 84 87 20 83 74 43 78 34 94 47 89 4 30 36 34 56 32 31
 56 22 50 52 68 98 52 80 14 98 43 60 20 49 15 38 74 89 99 29 96 65 89 41
 72 53 89 31 34 64 0 47 87 70 98 86 41 25 34 10 44 36 54 52 54 86 33 38
 25 49 75 53]

OUTPUT VECTOR RESULT A + B
[73 82 142 80 91 76 78 135 98 124 129 100 57 118 187 137 130 60 81 184
 152 141 160 92 153 160 148 123 132 145 114 95 82 177 137 112 109 133
 102 65 117 11 111 108 48 109 123 111 132 61 58 99 93 143 78 136 37 145
 84 78 109 66 97 122 84 164 155 118 167 121 155 102 130 107 116 119 50
 84 9 108 155 133 172 170 59 107 101 40 59 61 79 55 147 122 57 65
 95 54 153 68]

There's more...
PyCUDA also has element-wise functionality:

ElementwiseKernel(arguments,operation,name,optional_parameters)

This feature has pretty much the same arguments as the function built for PyOpenCL,
except for the context parameter. The same example this section, which is implemented
through PyCUDA, has the following listing:

import pycuda.autoinit
import numpy
from pycuda.elementwise import ElementwiseKernel
import numpy.linalg as la

vector_dimension=100
input_vector_a = np.random.randint(100,size= vector_dimension)
input_vector_b = np.random.randint(100,size= vector_dimension)
output_vector_c = gpuarray.empty_like(input_vector_a)

elementwiseSum = ElementwiseKernel(" int *a, int * b, int *c",\
 "c[i] = a[i] + b[i]"," elementwiseSum ")
elementwiseSum(input_vector_a, input_vector_b,output_vector_c)

print ("PyCUDA ELEMENTWISE SUM OF TWO VECTORS")
print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")

Heterogeneous Computing Chapter 8

[287]

print (vector_a)
print ("INPUT VECTOR B")
print (vector_b)
print ("OUTPUT VECTOR RESULT A + B ")
print (result_vector)

See also
In the following link, you'll find interesting examples of PyOpenCL applications: https:/ /
github.com/romanarranz/ PyOpenCL.

Evaluating PyOpenCL applications
In this section, we are doing a comparative test of performance between CPU and GPU by
using the PyOpenCL library.

In fact, before studying the performance of the algorithms to be implemented, it is also
important to understand the computational advantages offered by the computing platform
you have.

Getting started
The specific characteristics of a computing system interfere with the computational time,
and hence they represent an aspect of primary importance.

In the following example, we will perform a test in order to monitor performance on such a
system:

GPU: GeForce 840 M
CPU: Intel Core i7 – 2.40 GHz
RAM: 8 GB

How to do it...
In the following test, the calculation time of a mathematical operation, as the sum of two
vectors with floating-point elements, will be evaluated and compared. To make the
comparison, the same operation will be performed on two separate functions.

https://github.com/romanarranz/PyOpenCL
https://github.com/romanarranz/PyOpenCL
https://github.com/romanarranz/PyOpenCL
https://github.com/romanarranz/PyOpenCL
https://github.com/romanarranz/PyOpenCL
https://github.com/romanarranz/PyOpenCL
https://github.com/romanarranz/PyOpenCL
https://github.com/romanarranz/PyOpenCL
https://github.com/romanarranz/PyOpenCL
https://github.com/romanarranz/PyOpenCL

Heterogeneous Computing Chapter 8

[288]

The first function is computed by the CPU only, while the second function is written by
using the PyOpenCL library to use the GPU card. The test is performed on vectors with a
size of 10,000 elements.

Here is the code:

Import the relevant libraries. Note the import of the time library to calculate the1.
computation times, and the linalg library, which is a tool of linear algebra tools
of the numpy library:

from time import time
import pyopencl as cl
import numpy as np
import deviceInfoPyopencl as device_info
import numpy.linalg as la

Then, we define the input vectors. They both contain 10000 random elements of2.
floating-point numbers:

a = np.random.rand(10000).astype(np.float32)
b = np.random.rand(10000).astype(np.float32)

The following function computes the sum of the two vectors working on the CPU3.
(host):

def test_cpu_vector_sum(a, b):
 c_cpu = np.empty_like(a)
 cpu_start_time = time()
 for i in range(10000):
 for j in range(10000):
 c_cpu[i] = a[i] + b[i]
 cpu_end_time = time()
 print("CPU Time: {0} s".format(cpu_end_time - cpu_start_time))
 return c_cpu

The following function computes the sum of the two vectors working on the4.
GPU (device):

def test_gpu_vector_sum(a, b):
 platform = cl.get_platforms()[0]
 device = platform.get_devices()[0]
 context = cl.Context([device])
 queue = cl.CommandQueue(context,properties=\
cl.command_queue_properties.PROFILING_ENABLE)

Heterogeneous Computing Chapter 8

[289]

Within the test_gpu_vector_sum function, we prepare the memory buffers to5.
contain the input vectors and the output vector:

 a_buffer = cl.Buffer(context,cl.mem_flags.READ_ONLY \
 | cl.mem_flags.COPY_HOST_PTR, hostbuf=a)
 b_buffer = cl.Buffer(context,cl.mem_flags.READ_ONLY \
 | cl.mem_flags.COPY_HOST_PTR, hostbuf=b)
 c_buffer = cl.Buffer(context,cl.mem_flags.WRITE_ONLY, b.nbytes)

Still, within the test_gpu_vector_sum function, we define the kernel that will6.
computerize the sum of the two vectors on the device:

 program = cl.Program(context, """
 __kernel void sum(__global const float *a,\
 __global const float *b,\
 __global float *c){
 int i = get_global_id(0);
 int j;
 for(j = 0; j < 10000; j++){
 c[i] = a[i] + b[i];}
 }""").build()

Then, we reset the gpu_start_time variable before starting the calculation.7.
After this, we calculate the sum of two vectors and then we evaluate the
calculation time:

 gpu_start_time = time()
 event = program.sum(queue, a.shape, None,a_buffer, b_buffer,\
 c_buffer)
 event.wait()
 elapsed = 1e-9*(event.profile.end - event.profile.start)
 print("GPU Kernel evaluation Time: {0} s".format(elapsed))
 c_gpu = np.empty_like(a)
 cl._enqueue_read_buffer(queue, c_buffer, c_gpu).wait()
 gpu_end_time = time()
 print("GPU Time: {0} s".format(gpu_end_time - gpu_start_time))
 return c_gpu

Finally, we perform the test, recalling the two functions defined previously:8.

if __name__ == "__main__":
 device_info.print_device_info()
 cpu_result = test_cpu_vector_sum(a, b)
 gpu_result = test_gpu_vector_sum(a, b)
 assert (la.norm(cpu_result - gpu_result)) < 1e-5

Heterogeneous Computing Chapter 8

[290]

How it works...
As explained previously, the test consists of executing the calculation task, both on the CPU
via the test_cpu_vector_sum function, and then on the GPU via the
test_gpu_vector_sum function.

Both functions report the execution time.

Regarding the testing function on the CPU, test_cpu_vector_sum, it consists of a double
calculation loop on 10000 vector elements:

 cpu_start_time = time()
 for i in range(10000):
 for j in range(10000):
 c_cpu[i] = a[i] + b[i]
 cpu_end_time = time()

The total CPU time is the difference between the following:

 CPU Time = cpu_end_time - cpu_start_time

As for the test_gpu_vector_sum function, you can see the following by looking at the
execution kernel:

 __kernel void sum(__global const float *a,
 __global const float *b,
 __global float *c){
 int i=get_global_id(0);
 int j;
 for(j=0;j< 10000;j++){
 c[i]=a[i]+b[i];}

The sum of the two vectors is performed through a single calculation loop.

The result, as can be imagined, is a substantial reduction in the execution time for the
test_gpu_vector_sum function:

(base) C:\>python testApplicationPyopencl.py

==
OpenCL Platforms and Devices
==
Platform - Name: NVIDIA CUDA
Platform - Vendor: NVIDIA Corporation
Platform - Version: OpenCL 1.2 CUDA 10.1.152
Platform - Profile: FULL_PROFILE
 --

Heterogeneous Computing Chapter 8

[291]

 Device - Name: GeForce 840M
 Device - Type: GPU
 Device - Max Clock Speed: 1124 Mhz
 Device - Compute Units: 3
 Device - Local Memory: 48 KB
 Device - Constant Memory: 64 KB
 Device - Global Memory: 2 GB
 Device - Max Buffer/Image Size: 512 MB
 Device - Max Work Group Size: 1024
==
Platform - Name: Intel(R) OpenCL
Platform - Vendor: Intel(R) Corporation
Platform - Version: OpenCL 2.0
Platform - Profile: FULL_PROFILE
 --
 Device - Name: Intel(R) HD Graphics 5500
 Device - Type: GPU
 Device - Max Clock Speed: 950 Mhz
 Device - Compute Units: 24
 Device - Local Memory: 64 KB
 Device - Constant Memory: 64 KB
 Device - Global Memory: 3 GB
 Device - Max Buffer/Image Size: 808 MB
 Device - Max Work Group Size: 256
 --
 Device - Name: Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz
 Device - Type: CPU
 Device - Max Clock Speed: 2400 Mhz
 Device - Compute Units: 4
 Device - Local Memory: 32 KB
 Device - Constant Memory: 128 KB
 Device - Global Memory: 8 GB
 Device - Max Buffer/Image Size: 2026 MB
 Device - Max Work Group Size: 8192

CPU Time: 39.505873918533325 s
GPU Kernel evaluation Time: 0.013606592 s
GPU Time: 0.019981861114501953 s

Even if the test is not computationally expansive, it provides useful indications of the
potential of a GPU card.

Heterogeneous Computing Chapter 8

[292]

There's more...
OpenCL is a standardized cross-platform API for developing applications that exploit
parallel computing in heterogeneous systems. The similarities with CUDA are remarkable,
including everything from the memory hierarchy to the direct correspondence between
threads and work items.

Even at the programming level, there are many similar aspects and extensions with the
same functionality.

However, OpenCL has a much more complex device management model due to its ability
to support a wide variety of hardware. On the other hand, OpenCL is designed to have
code portability between products from different manufacturers.

CUDA, thanks to its greater maturity and dedicated hardware, offers simplified device
management and higher-level APIs that make it preferable, but only if you are dealing with
specific architectures (that is, NVIDIA graphic cards).

The pros and cons of the CUDA and OpenCL libraries, as well as the PyCUDA and
PyOpenCL libraries, are explained in the following sections.

Pros of OpenCL and PyOpenCL
The pros are as follows:

They allow the use of heterogeneous systems with different types of
microprocessors.
The same code runs on different systems.

Cons of OpenCL and PyOpenCL
The cons are as follows:

Complex device management
APIs not fully stable

Heterogeneous Computing Chapter 8

[293]

Pros of CUDA and PyCUDA
The pros are as follows:

APIs with very high abstraction levels
Extensions for many programming languages
Huge documentation and a very large community

Cons of CUDA and PyCUDA
The cons are as follows:

Supports only the latest NVIDIA GPUs as devices
Reduces heterogeneity to CPUs and GPUs

See also
Andreas Klöckner has made a series of lectures on GPU programming with PyCuda and
PyOpenCL available at https:/ /www. bu. edu/pasi/ courses/ gpu- programming- with-
pyopencl-and-pycuda/ and https:/ / www. youtube. com/ results? search_ query=
pyopenCL+and+pycuda.

GPU programming with Numba
Numba is a Python compiler that provides CUDA-based APIs. It has been designed
primarily for numerical computing tasks, just like the NumPy library. In particular,
the numba library manages and processes the array data types provided by NumPy.

In fact, the exploitation of data parallelism, which is inherent in numerical computation
involving arrays, is a natural choice for GPU accelerators.

The Numba compiler works by specifying the signature types (or decorators) for Python
functions and enabling the compilation at runtime (this type of compilation is also
called Just In Time).

https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.bu.edu/pasi/courses/gpu-programming-with-pyopencl-and-pycuda/
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda
https://www.youtube.com/results?search_query=pyopenCL+and+pycuda

Heterogeneous Computing Chapter 8

[294]

The most important decorators are as follows:

jit: This allows the developer to write CUDA-like functions. When
encountered, the compiler translates the code under the decorator into the
pseudo-assembly PTX language, so that it can be executed by the GPU.
autojit: This annotates a function for a deferred compilation procedure, which
means that the function with this signature is compiled exactly once.
vectorize: This creates a so-called NumPy Universal Function (ufunc) that
takes a function and executes it in parallel with vector arguments.
guvectorize: This builds a so-called NumPy Generalized Universal Function
(gufunc). A gufunc object may operate on entire sub-arrays.

Getting ready
Numba (release 0.45) is compatible with Python 2.7 and 3.5 or later, as well as NumPy
versions 1.7 to 1.16.

To install numba, it is recommended as per pyopencl to use the Anaconda framework, so,
from the Anaconda Prompt, just type the following:

(base) C:\> conda install numba

In addition, to use the full potential of numba, the cudatoolkit library must be installed:

(base) C:\> conda install cudatoolkit

After that, it's possible to verify whether the CUDA library and GPU are properly detected.

Open the Python interpreter from the Anaconda Prompt:

(base) C:\> python
Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)]
:: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>

The first test entails checking whether the CUDA library (cudatoolkit) is properly
installed:

>>> import numba.cuda.api
>>> import numba.cuda.cudadrv.libs
>>> numba.cuda.cudadrv.libs.test()

Heterogeneous Computing Chapter 8

[295]

The following output shows the quality of the installation, where all the checks returned a
positive result:

Finding cublas from Conda environment
 located at C:\Users\Giancarlo\Anaconda3\Library\bin\cublas64_10.dll
 trying to open library... ok
Finding cusparse from Conda environment
 located at C:\Users\Giancarlo\Anaconda3\Library\bin\cusparse64_10.dll
 trying to open library... ok
Finding cufft from Conda environment
 located at C:\Users\Giancarlo\Anaconda3\Library\bin\cufft64_10.dll
 trying to open library... ok
Finding curand from Conda environment
 located at C:\Users\Giancarlo\Anaconda3\Library\bin\curand64_10.dll
 trying to open library... ok
Finding nvvm from Conda environment
 located at C:\Users\Giancarlo\Anaconda3\Library\bin\nvvm64_33_0.dll
 trying to open library... ok
Finding libdevice from Conda environment
 searching for compute_20... ok
 searching for compute_30... ok
 searching for compute_35... ok
 searching for compute_50... ok
True

In the second test, we verify the presence of a graphics card:

>>> numba.cuda.api.detect()

The output shows the graphic card found and whether it is supported:

Found 1 CUDA devices
id 0 b'GeForce 840M' [SUPPORTED]
 compute capability: 5.0
 pci device id: 0
 pci bus id: 8
Summary:
 1/1 devices are supported
True

How to do it...
In this example, we provide a demonstration of the Numba compiler using
the @guvectorize annotation.

Heterogeneous Computing Chapter 8

[296]

The task to execute is matrix multiplication:

Import guvectorize from the numba library and the numpy module:1.

from numba import guvectorize
import numpy as np

Using the @guvectorize decorator, we define the matmul function, which will2.
perform the matrix multiplication task:

@guvectorize(['void(int64[:,:], int64[:,:], int64[:,:])'],
 '(m,n),(n,p)->(m,p)')
def matmul(A, B, C):
 m, n = A.shape
 n, p = B.shape
 for i in range(m):
 for j in range(p):
 C[i, j] = 0
 for k in range(n):
 C[i, j] += A[i, k] * B[k, j]

The input matrices are 10 × 10 in size, while the elements are integers:3.

dim = 10
A = np.random.randint(dim,size=(dim, dim))
B = np.random.randint(dim,size=(dim, dim))

Finally, we call the matmul function on the previously defined input matrices:4.

C = matmul(A, B)

We print the input matrices and the resulting matrix:5.

print("INPUT MATRIX A")
print(":\n%s" % A)
print("INPUT MATRIX B")
print(":\n%s" % B)
print("RESULT MATRIX C = A*B")
print(":\n%s" % C)

Heterogeneous Computing Chapter 8

[297]

How it works...
The @guvectorize decorator works on array arguments, taking four arguments in order to
specify the gufunc signature:

The first three arguments specify the types of data to be managed and arrays of
integers: void(int64[:,:], int64[:,:], int64[:,:]).
The last argument of @guvectorize specifies how to manipulate the matrix
dimensions: (m,n),(n,p)->(m,p).

Then, the matrix multiplication operation is defined, where A and B are the input matrices
and C is the output matrix: A(m,n)* B(n,p) = C(m,p), where m, n, and p are the matrix
dimensions.

The matrix product is performed through three for loops along with the matrix indices:

 for i in range(m):
 for j in range(p):
 C[i, j] = 0
 for k in range(n):
 C[i, j] += A[i, k] * B[k, j]

The randint NumPy function is used here to build the input matrices of 10 × 10
dimensions:

dim = 10
A = np.random.randint(dim,size=(dim, dim))
B = np.random.randint(dim,size=(dim, dim))

Finally, the matmul function is called with these matrices as arguments, and the
resultant C matrix is printed out:

C = matmul(A, B)
print("RESULT MATRIX C = A*B")
print(":\n%s" % C)

To execute this example, type the following:

(base) C:\>python matMulNumba.py

Heterogeneous Computing Chapter 8

[298]

The result shows the two matrices given as input and the matrix resulting from their
product:

INPUT MATRIX A
:
[[8 7 1 3 1 0 4 9 2 2]
 [3 6 2 7 7 9 8 4 4 9]
 [8 9 9 9 1 1 1 1 8 0]
 [0 5 0 7 1 3 2 0 7 3]
 [4 2 6 4 1 2 9 1 0 5]
 [3 0 6 5 1 0 4 3 7 4]
 [0 9 7 2 1 4 3 3 7 3]
 [1 7 2 7 1 8 0 3 4 1]
 [5 1 5 0 7 7 2 3 0 9]
 [4 6 3 6 0 3 3 4 1 2]]
INPUT MATRIX B
:
[[2 1 4 6 6 4 9 9 5 2]
 [8 6 7 6 5 9 2 1 0 9]
 [4 1 2 4 8 2 9 5 1 4]
 [9 9 1 5 0 5 1 1 7 1]
 [8 7 8 3 9 1 4 3 1 5]
 [7 2 5 8 3 5 8 5 6 2]
 [5 3 1 4 3 7 2 9 9 5]
 [8 7 9 3 4 1 7 8 0 4]
 [3 0 4 2 3 8 8 8 6 2]
 [8 6 7 1 8 3 0 8 8 9]]
RESULT MATRIX C = A*B
:
[[225 172 201 161 170 172 189 230 127 169]
 [400 277 289 251 278 276 240 324 295 273]
 [257 171 177 217 208 254 265 224 176 174]
 [187 130 116 117 94 175 105 128 152 114]
 [199 133 117 143 168 156 143 214 188 157]
 [180 118 124 113 152 149 175 213 167 122]
 [238 142 186 165 188 215 202 200 139 192]
 [237 158 162 176 122 185 169 140 137 130]
 [249 160 220 159 249 125 201 241 169 191]
 [209 152 142 154 131 160 147 161 132 137]]

Heterogeneous Computing Chapter 8

[299]

There's more...
Writing an algorithm for a reduction operation using PyCUDA can be quite complex. For
this purpose, Numba provides the @reduce decorator for converting simple binary
operations into reduction kernels.

Reduction operations reduce a set of values to a single value. A typical example of a
reduction operation is to calculate the sum of all the elements of an array. As an example,
consider the following array of elements: 1, 2, 3, 4, 5, 6, 7, 8.

The sequential algorithm operates in the way shown in the diagram, that is, adding the
elements of the array one after the other:

Sequential sum

Heterogeneous Computing Chapter 8

[300]

A parallel algorithm operates according to the following schema:

Parallel sum

It is clear that the latter has the advantage of shorter execution time.

By using Numba and the @reduce decorator, we can write an algorithm, in a few lines of
code, for the parallel sum on an array of integers ranging from 1 to 10,000:

import numpy
from numba import cuda

@cuda.reduce
def sum_reduce(a, b):
 return a + b

A = (numpy.arange(10000, dtype=numpy.int64)) + 1
print(A)
got = sum_reduce(A)
print(got)

The previous example can be performed by typing the following command:

(base) C:\>python reduceNumba.py

The following result is provided:

vector to reduce = [1 2 3 ... 9998 9999 10000]
result = 50005000

Heterogeneous Computing Chapter 8

[301]

See also
In the following repository, you can find many examples of Numba: https:/ /github. com/
numba/numba-examples. An interesting introduction to Numba and CUDA programming
can be found at https:/ /nyu- cds. github. io/ python- numba/ 05- cuda/ .

https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://github.com/numba/numba-examples
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/
https://nyu-cds.github.io/python-numba/

9
Python Debugging and Testing

This last chapter will introduce two important software engineering topics—debugging
and testing—that are important steps in the software development process.

The first part of the chapter is focused on code debugging. A bug is a mistake in a program
and can cause different problems that may be more or less serious depending on the
situation. To encourage programmers to search for bugs, special software tools are used,
called debuggers; using these software tools, we have the ability to find errors or
malfunctions within a program by taking advantage of specific debugging functions, an
activity that exists precisely for identifying the portion of software affected by a bug.

In the second part, the main topic is software testing: it is a process used to identify
deficiencies of correctness, completeness, and reliability in a software product that is being
developed.

In this context, we will, therefore, examine the three most important Python tools for
debugging code in action. These are winpdb-reborn, which involves debugging with a
visualization tool; pdb, the debugger from the Python standard library; and rpdb, where r
stands for remote, meaning that it is code debugging from a remote machine.

Regarding software testing, we will examine the following tools: unittest and nose.

These are frameworks for developing unit tests, whereby the unit is the minimum
component of a program within an independent operation.

Python Debugging and Testing Chapter 9

[303]

In this chapter, we will cover the following topics:

What is debugging?
What is software testing?
Debugging using Winpdb Reborn
Interacting with pdb
Implementing rpdb for debugging
Dealing with unittest
Application testing using nose

What is debugging?
The term debugging indicates the activity of identifying the portion of code in which one or
more errors (bugs) are detected in software following its use.

The error can be localized during the testing phase of the program; that is when it is still in
the development phase and is not yet ready to be used by the end-user, or during the use of
the program by the latter. After finding the error, the debugging phase ensues and
identifies the software part in which the error lies, which is sometimes very complex.

Nowadays, this activity is supported by specific applications and debuggers, which show
the execution to the programmer using step-by-step software instructions, allowing the
viewing and analysis of the inputs and outputs of the program itself at the same time.

Before these tools were available for the activity of identifying and correcting errors (and
even now, in the absence of them), the simplest (but also least effective) techniques for code
inspection were printing a file or printing the instructions on the screen that the program
was executing.

Debugging is one of the most important operations for the development of a program. It is
often extremely difficult due to the complexity of the software that is being developed. It is
even delicate due to the risk of introducing new errors or behaviors that are not in line with
those desired in the attempt to correct those for which the activity was undertaken.

Python Debugging and Testing Chapter 9

[304]

Although the task of perfecting software using debugging is unique every time and
constitutes a story in itself, some general principles are always applicable. In particular, in
the context of software applications, it is possible to recognize the following four debugging
phases, summarized in the following diagram:

Debugging phases

Of course, Python offers the developer numerous debugging tools (see
https:/ /wiki. python. org/ moin/ PythonDebuggingTools for a list of
Python debuggers). In this chapter, we will consider Winpdb
Reborn, rpdb, and pdb.

https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools
https://wiki.python.org/moin/PythonDebuggingTools

Python Debugging and Testing Chapter 9

[305]

What is software testing?
As mentioned in the introduction of this chapter, software testing is a process used to
identify deficiencies of correctness, completeness, and reliability in a software product that
is being developed.

With this activity, we, therefore, want to ensure the quality of the product by searching
search for defects, or a sequence of instructions and procedures that, when executed with
particular input data and in particular operating environments, generate malfunctions. A
malfunction is a behavior of the software that is not expected by the user; therefore, it is
different from the specifications and from the implicit or explicit requirements defined for
such applications.

The purpose of testing is, therefore, to detect defects through malfunctions, so as to
minimize the probability of such malfunctions occurring in the normal use of the software
product. Testing cannot establish that a product functions correctly under all possible
conditions of execution, but it can highlight defects under specific conditions.

In fact, given the impossibility of testing all the input combinations and the possible
software and hardware environments in which the application may be operating, the
probability of malfunctions cannot be reduced to zero, but it must be reduced to a
minimum in order to be acceptable to the user.

A particular type of software testing is the unit test (which we will learn about in this
chapter), the purpose of which is to isolate each part of a program and show its correctness
and completeness in the implementation. It also promptly brings out any defects so that
they can be corrected easily before integration.

Furthermore, the unit test lowers the costs—in terms of time and resources—of identifying
and correcting defects, compared to achieving the same result by performing tests on the
entire application.

Debugging using Winpdb Reborn
Winpdb Reborn is one of the most important and well-known Python debuggers. The
major strength of this debugger is managing the debugging of thread-based code.

Python Debugging and Testing Chapter 9

[306]

Winpdb Reborn is based on the RPDB2 debugger, while Winpdb is the
GUI frontend to RPDB2 (see: https:/ /github. com/ bluebird75/ winpdb/
blob/ master/ rpdb2. py).

Getting ready
The most commonly used way to install Winpdb Reborn (release 2.0.0 dev5) is via pip, so
from your console, you need to type the following:

C:\>pip install winpdb-reborn

Also, if you have not already installed wxPython in your Python distribution, then you
need to do so. wxPython is a cross-platform GUI toolkit for the Python language.

For Python Version 2.x, please refer to https:/ / sourceforge. net/
projects/ wxpython/ files/ wxPython/ . For Python Version 3.x, wxPython
is automatically installed as a dependency via pip.

In the next section, we will examine the main features and the graphical interface of
Winpdb Reborn through a simple example of its use.

How to do it...
Suppose we want to analyze the following Python application, which uses the threading
library. An example that is very similar to the following example is already described in
the How to define a thread subclass section of Chapter 2, Thread-Based Parallelism. In the
following example, we use the MyThreadClass class to create and manage the execution of
three threads. Here is the entire code to debug:

import time
import os
from random import randint
from threading import Thread

class MyThreadClass (Thread):
 def __init__(self, name, duration):
 Thread.__init__(self)
 self.name = name
 self.duration = duration
 def run(self):

https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://github.com/bluebird75/winpdb/blob/master/rpdb2.py
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/

Python Debugging and Testing Chapter 9

[307]

 print ("---> " + self.name + \
 " running, belonging to process ID "\
 + str(os.getpid()) + "\n")
 time.sleep(self.duration)
 print ("---> " + self.name + " over\n")
def main():
 start_time = time.time()
 # Thread Creation
 thread1 = MyThreadClass("Thread#1 ", randint(1,10))
 thread2 = MyThreadClass("Thread#2 ", randint(1,10))
 thread3 = MyThreadClass("Thread#3 ", randint(1,10))

 # Thread Running
 thread1.start()
 thread2.start()
 thread3.start()

 # Thread joining
 thread1.join()
 thread2.join()
 thread3.join()

 # End
 print("End")

 #Execution Time
 print("--- %s seconds ---" % (time.time() - start_time))

if __name__ == "__main__":
 main()

Let's have a look at the following steps:

Open your console and type in the name of the folder containing the sample1.
file, winpdb_reborn_code_example.py:

 python -m winpdb .\winpdb_reborn_code_example.py

Python Debugging and Testing Chapter 9

[308]

This works on macOS as well, but you have to use a framework build of
Python. If you are using Winpdb Reborn with Anaconda, simply
use pythonw instead of python to launch a Winpdb Reborn session.

If the installation was successful, then the Winpdb Reborn GUI should open:2.

Windpdb Reborn GUI

Python Debugging and Testing Chapter 9

[309]

As you can see in the following screenshot, we have inserted two breakpoints3.
(using the Breakpoints menu), in both line 12 and line 23 (highlighted in red):

Code breakpoints

To learn about what a breakpoint is, move on to the There's more... section
of this recipe.

Remaining in the Source window, we place the mouse on line 23, where we have4.
inserted the second breakpoint, and press the F8 key, and then the F5 key. The
breakpoint allows the code to be executed up to the selected line. As you can
see, Namespace indicates that we are considering the instance of the
MyThreadClass class, with thread#1 as an argument:

Python Debugging and Testing Chapter 9

[310]

Namespace

Another fundamental feature of the debugger is the Step Into capability, which5.
is the ability to inspect not only the code being debugged but also the library
functions and the subroutines called for execution.
Before you start to delete the previous breakpoints (Menu | Breakpoints | Clear6.
All), insert the new breakpoint on line 28:

Line 28 breakpoint

Python Debugging and Testing Chapter 9

[311]

Finally, press the F5 key and the application will be executed up to the7.
breakpoint of line 28.
Then, press F7. Here, the source window no longer shows our sample code, but8.
rather, the threading library we are using (see the next screenshot).
Therefore, the Breakpoints functionality, together with that of Step Into, not9.
only allow the debugging of the code in question but also allow the inspection of
all the library functions and any other subroutines used:

Line 28 Source window after executing Step Into

Python Debugging and Testing Chapter 9

[312]

How it works...
In this first example, we have become familiar with the Winpdb Reborn tool. This
debugging environment (like every environment in general) allows you to stop program
execution at precise points, inspect the execution stack, the contents of the variables, the
status of the objects created, and much more.

To use Winpdb Reborn, just take a note of the following basic steps:

Set some breakpoints in the source code (the Source window).1.
Inspect the functions through the Step Into function.2.
View the status of the variables (the Namespace window) and the execution3.
stack (the Stack window).

The breakpoints are set by simply double-clicking the desired line with the left mouse
button (you will see the selected line underlined in red). As a general warning, it is
inadvisable to have multiple commands on the same line; otherwise, it will not be possible
to associate breakpoints with some of them.

When you use the right mouse button, you can selectively disable breakpoints without
removing them (the red highlighting will disappear). To remove all the breakpoints
instead, use the Clear All command, which is present in the Breakpoints menu, as
mentioned previously.

When the first breakpoint is reached, it is good to keep an eye on the following views in
the point of the program that is being analyzed:

The Stack view shows the contents of the execution stack, where all the instances
of various methods that are currently suspended appear. Typically, the one at the
bottom of the stack is the main method and the one at the top of the stack is the
method containing the breakpoint that has been reached.
The Namespace view shows the local variables of the method and allows you to
inspect the values. If the variables refer to objects, then it is possible to find out
the unique identifier of the object and inspect its status.

In general, the execution of a program can be managed with different modes associated
with the icon (or the Fx keys) present on the Winpdb Reborn command bar.

Python Debugging and Testing Chapter 9

[313]

Finally, we'll point out the following important execution methods:

Step Into (F7 key): This resumes the execution of the program one line at a time,
and invocations of library methods or subroutines.
Return (F12 key): This allows you to resume execution at the exact point where
the Step Into function was activated.
Next (F6 key): This resumes the execution of the program one line at a time
without stopping in any methods invoked.
Run to Line (F8 key) This runs the program until it stops (waiting for new
commands) at the indicated line.

There's more...
As you saw in the Winpdb Reborn GUI screenshot, the GUI is divided into five main
windows:

Namespace: In this window, the names of entities are displayed, which are
various variables and identifiers that are defined by the program and used in the
source file.
Threads: The current thread of the execution is shown, and it is characterized by
the TID (short for Thread IDentification) fields, the name of the thread, and the
thread status.
Stack: This is where the execution stack of the program to be analyzed is shown.
Stacks are also known as Last In, First Out (LIFO) data structures, as the last
element inserted is the first to be removed. When a program calls a function, the
called function must know how to return the calling control, so the return
address of the calling function is entered into the program execution stack. The
program execution stack also contains the memory for the local variables used at
each invocation of the function.
Console: This is a command-line interface, thus allowing a textual interaction
between the user and Winpdb Reborn.
Source: This window shows the source code to debug. By scrolling along the
lines of code, it is also possible to insert the breakpoints by pressing F9 once you
are on the line of code of interest.

The breakpoint is a very basic debugging tool. In fact, it allows you to run a program, but
with the possibility of interrupting it at the desired point or when certain conditions occur,
in order to acquire information on a running program.

Python Debugging and Testing Chapter 9

[314]

There are multiple debugging strategies. Here, we list some of them:

Reproduce the error: Identify the input data that caused it.
Simplify the error: Identify the simplest possible data that caused it.
Divide and rule: Perform the main proceeding in step-over mode until the
anomaly occurs. The method that caused it is the last performed before it was
possible to find the problem, so we can re-debug by doing step-in into that
particular invocation, and proceeding again with step-over following the
method's instructions.
Proceed consciously: During debugging, you constantly compare the current
values of the variables with the ones you would expect.
Check all the details: Don't overlook the details while debugging. It is best to
make a note if you notice any discrepancies in the source code.
Correct the errors: Correct the error only if you are sure you have understood the
problem well.

See also
A good Winpdb Reborn tutorial can be found
at http://heather.cs.ucdavis.edu/~matloff/winpdb.html#usewin.

Interacting with pdb
pdb is a Python module for performing interactive debugging.

The main features of pdb are as follows:

The use of breakpoints
Interactive processing of the source code line by line
Stack frame analysis

The debugger is implemented through the pdb class. For this reason, it can be easily
extended with new features.

http://heather.cs.ucdavis.edu/~matloff/winpdb.html#usewin

Python Debugging and Testing Chapter 9

[315]

Getting ready
No installation of pdb is required because it is part of the Python standard library. It can be
launched with the following main use pattern:

Interacting with the command line
Using the Python interpreter
Inserting a directive (that is, a pdb statement) in the code to debug

Interacting with the command line
The simplest method is simply passing the name of your program as input. For example,
for the pdb_test.py program, this is as follows:

class Pdb_test(object):
 def __init__(self, parameter):
 self.counter = parameter

 def go(self):
 for j in range(self.counter):
 print ("--->",j)
 return

if __name__ == '__main__':
 Pdb_test(10).go()

By executing from the command line, pdb loads the source file to be analyzed and stops its
execution at the first statement found. In this case, the debug stops at line 1 (that is, at the
definition of the Pdb_test class):

python -m pdb pdb_test.py
> .../pdb_test.py(1)<module>()
-> class Pdb_test(object):
(Pdb)

Python Debugging and Testing Chapter 9

[316]

Using the Python interpreter
The pdb module can be used in interactive mode by using the run() command:

>>> import pdb_test
>>> import pdb
>>> pdb.run('pdb_test.Pdb_test(10).go()')
> <string>(1)<module>()
(Pdb)

In this case, the run() statement is from the debugger and will stop the execution before
evaluating the first expression.

Inserting a directive in the code to debug
For a long-running process, where the problem occurs much later in the program execution,
it would be much more convenient to start the debugger within the program using the
pdb set_trace() directive:

import pdb

class Pdb_test(object):
 def __init__(self, parameter):
 self.counter = parameter
 def go(self):
 for j in range(self.counter):
 pdb.set_trace()
 print ("--->",j)
 return

if __name__ == '__main__':
 Pdb_test(10).go()

set_trace() can be called at any point in the program to debug. For example, it can be
called based on conditions, exception handlers, or a specific branch of control instructions.

In this case, the output is as follows:

-> print ("--->",j)
(Pdb)

The code run stops, exactly after the pdb.set_trace() statement completes.

Python Debugging and Testing Chapter 9

[317]

How to do it...
To interact with pdb, you need to use its language, which allows you to move around the
code, examine and modify the values of the variables, insert breakpoints, or move through
stack calls:

Use the where command (or alternatively, the compact form, w) to view which1.
line of code is running and the call stack. In this case, this is on line 17 in
the go() method of the pdb_test.py module:

> python -m pdb pdb_test.py
-> class Pdb_test(object):
(Pdb) where
 c:\python35\lib\bdb.py(431)run()
-> exec(cmd, globals, locals)
 <string>(1)<module>()
(Pdb)

Inspect the lines of code near the current location (indicated by an arrow) by2.
using list. In the default mode, 11 rows are listed around the current one (five
before and five after):

 (Pdb) list
 1 -> class Pdb_test(object):
 2 def __init__(self, parameter):
 3 self.counter = parameter
 4
 5 def go(self):
 6 for j in range(self.counter):
 7 print ("--->",j)
 8 return
 9
 10 if __name__ == '__main__':
 11 Pdb_test(10).go()

If list receives two parameters, then they are interpreted as the first and last3.
lines to be displayed:

 (Pdb) list 3,9
 3 self.counter = parameter
 4
 5 def go(self):
 6 for j in range(self.counter):
 7 print ("--->",j)
 8 return
 9

Python Debugging and Testing Chapter 9

[318]

Use up (or u) to move to older frames on the stack and down (or d) to move to4.
more recent stack frames:

(Pdb) up
> <string>(1)<module>()
(Pdb) up
> c:\python35\lib\bdb.py(431)run()
-> exec(cmd, globals, locals)
(Pdb) down
> <string>(1)<module>()
(Pdb) down
>....\pdb_test.py(1)<module>()
-> class Pdb_test(object):
(Pdb)

How it works...
The debugging activity is carried out following the flow of the running program (tracing).
In each line of code, the coder displays the operations performed by the instructions in real
time and the values recorded in the variables. In this way, the developer can check that
everything is working properly or identify the cause of a malfunction.

Each programming language has its own debugger. However, there is no valid debugger
for all programming languages because each language has its own syntax and grammar.
The debugger executes the step-by-step source code. Therefore, the debugger must know
the rules of the language, like the compiler.

There's more...
The most useful pdb commands, along with their short forms, to keep in mind while
working with the Python debugger are as follows:

Command Action
args Prints the argument list of the current function
break Creates a breakpoint (requires parameters)
continue Continues program execution
help Lists the commands (or help) for a command (as a parameter)
jump Sets the next line to be executed
list Prints the source code around the current line

Python Debugging and Testing Chapter 9

[319]

next
Continues execution until the next line in the current function is
reached or returns

step Executes the current line, stopping at the first possible occasion
pp Pretty-prints the value of the expression
quit or exit Aborts from pdb
return Continues execution until the current function returns

See also
You can find out more about pdb by watching this interesting video tutorial: https:/ /www.
youtube.com/watch? v=bZZTeKPRSLQ.

Implementing rpdb for debugging
In some cases, it is appropriate to debug code in a remote location; that is, a location that
doesn't reside on the same machine in which we run the debugger. For this purpose, rpdb
was developed. This is a wrapper on pdb that uses a TCP socket to communicate with the
world outside.

Getting ready
The installation of rpdb first requires the main step of using pip. For Windows OS, just
type the following:

C:\>pip install rpdb

Then, you need to be sure that you have a working telnet client enabled on your machine.
In Windows 10, if you open Command Prompt and type telnet, then the OS will respond
with an error as it is not present by default in the installation.

Let's see how to install it with a few simple steps:

Open Command Prompt in administrator mode.1.
Click on the Cortana button and type cmd.2.
In the list that appears, right-click on the Command Prompt item and select Run3.
as Administrator.

https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ
https://www.youtube.com/watch?v=bZZTeKPRSLQ

Python Debugging and Testing Chapter 9

[320]

Then, when running Command Prompt as an administrator, type the following4.
command:

dism /online /Enable-Feature /FeatureName:TelnetClient

Wait a few minutes until the installation finishes. If the process is successful, then5.
you will see this:

Now, you can use telnet directly from the prompt. By typing telnet, the6.
following window should appear:

In the following example, let's see how to run a remote debug with rpdb.

Python Debugging and Testing Chapter 9

[321]

How to do it...
Let's perform the following steps:

Consider the following sample code:1.

import threading

def my_func(thread_number):
 return print('my_func called by thread N°
 {}'.format(thread_number))

def main():
 threads = []
 for i in range(10):
 t = threading.Thread(target=my_func, args=(i,))
 threads.append(t)
 t.start()
 t.join()

if __name__ == "__main__":
 main()

To use rpdb, you need to insert the following lines of code (just after the2.
import threading statement). In fact, these three lines of code enable the use of
rpdb via a remote client on port 4444 with an IP address of 127.0.0.1:

import rpdb
debugger = rpdb.Rpdb(port=4444)
rpdb.Rpdb().set_trace()

If you run the sample code after inserting these three lines of code that enable the3.
use of rpdb, then you should see the following message on Python Command
Prompt:

pdb is running on 127.0.0.1:4444

Then, you can switch to debug the sample code remotely by making the4.
following telnet connection:

telnet localhost 4444

Python Debugging and Testing Chapter 9

[322]

The following window should open:5.

In the sample code, note the arrow in line 7. The code is not running, it is just6.
waiting for an instruction to execute:

For example, here, we execute the code and type the next statement repeatedly:7.

 (Pdb) next
> c:\users\giancarlo\desktop\python parallel programming cookbook
2nd edition\python parallel programming new book\chapter_x- code
debugging\rpdb_code_example.py(10)<module>()
-> def main():
(Pdb) next
> c:\users\giancarlo\desktop\python parallel programming cookbook
2nd edition\python parallel programming new book\chapter_x- code
debugging\rpdb_code_example.py(18)<module>()
-> if __name__ == "__main__":
(Pdb) next
> c:\users\giancarlo\desktop\python parallel programming cookbook
2nd edition\python parallel programming new book\chapter_x- code
debugging\rpdb_code_example.py(20)<module>()
-> main()
(Pdb) next
my_func called by thread N 0
my_func called by thread N 1

Python Debugging and Testing Chapter 9

[323]

my_func called by thread N 2
my_func called by thread N 3
my_func called by thread N 4
my_func called by thread N 5
my_func called by thread N 6
my_func called by thread N 7
my_func called by thread N 8
my_func called by thread N 9
--Return--
> c:\users\giancarlo\desktop\python parallel programming cookbook
2nd edition\python parallel programming new book\chapter_x- code
debugging\rpdb_code_example.py(20)<module>()->None
-> main()
(Pdb)

Once the program is finished, you can still run a new debug section. Now, let's see how
rpdp works in the next section.

How it works...
In this section, we'll see how to simply move through the code by using the next statement,
which continues execution until the next line in the current function is reached or returned.

To use rpdb, follow these steps:

Import the relevant rpdb library:1.

import rpdb

Set the debugger parameter, which specifies the telnet port to connect to in order2.
to run the debugger:

debugger = rpdb.Rpdb(port=4444)

Call the set_trace() directive, which makes it possible to enter into3.
debugging mode:

rpdb.Rpdb().set_trace()

In our case, we placed the set_trace() directive immediately after the debugger
instance. In reality, we can place it anywhere in the code; for example, if conditions are
satisfied, or within a section managed by an exception.

Python Debugging and Testing Chapter 9

[324]

The second step, instead, consists of opening Command Prompt and launching telnet by
setting the same port value specified in the debugger parameter definition within the
sample code:

telnet localhost 4444

It is possible to interact with the rpdb debugger by using a small command language that
allows movement between calls to the stack, to examine and to modify the values of the
variables and control the way in which the debugger executes its own program.

There's more...
The list of commands with which you can interact with in rpdb can be displayed by typing
the help command from the Pdb prompt:

> c:\users\giancarlo\desktop\python parallel programming cookbook 2nd
edition\python parallel programming new book\chapter_x- code
debugging\rpdb_code_example.py(7)<module>()
-> def my_func(thread_number):
(Pdb) help

Documented commands (type help <topic>):
==
EOF c d h list q rv undisplay
a cl debug help ll quit s unt
alias clear disable ignore longlist r source until
args commands display interact n restart step up
b condition down j next return tbreak w
break cont enable jump p retval u whatis
bt continue exit l pp run unalias where

Miscellaneous help topics:
==========================
pdb exec

(Pdb)

Python Debugging and Testing Chapter 9

[325]

Among the most useful commands, this is how we insert the breakpoints in the code:

Type b and the line number to set a breakpoint. Here, a breakpoint is set in1.
lines 5 and 10:

 (Pdb) b 5
Breakpoint 1 at c:\users\giancarlo\desktop\python parallel
programming cookbook 2nd edition\python parallel programming new
book\chapter_x- code debugging\rpdb_code_example.py:5
(Pdb) b 10
Breakpoint 2 at c:\users\giancarlo\desktop\python parallel
programming cookbook 2nd edition\python parallel programming new
book\chapter_x- code debugging\rpdb_code_example.py:10

It is sufficient to type the b command to display the list of breakpoints2.
implemented:

 (Pdb) b
Num Type Disp Enb Where
1 breakpoint keep yes at c:\users\giancarlo\desktop\python parallel
programming cookbook 2nd edition\python parallel programming new
book\chapter_x- code debugging\rpdb_code_example.py:5
2 breakpoint keep yes at c:\users\giancarlo\desktop\python parallel
programming cookbook 2nd edition\python parallel programming new
book\chapter_x- code debugging\rpdb_code_example.py:10
(Pdb)

At each new breakpoint added, a numeric identifier is assigned. These identifiers are used
to enable, disable, and interactively remove breakpoints. To disable a breakpoint, use
the disable command, which tells the debugger not to stop when that line is reached. The
breakpoint is not forgotten but is ignored.

See also
You can find a lot of information on pdb, and then on rpdb, on this site: https:/ /github.
com/spiside/pdb- tutorial.

In the next two sections, we will look at some Python tools that are used for the
implementation of unit tests:

unittest

nose

https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial
https://github.com/spiside/pdb-tutorial

Python Debugging and Testing Chapter 9

[326]

Dealing with unittest
The unittest module is provided with the standard Python library. It has an extensive set
of tools and procedures for performing unit tests. In this section, we'll briefly see how the
unittest module works.

A unit test consists of two parts:

The code to manage the so-called test system
The test itself

Getting ready
The simplest unittest module can be obtained via the TestCase subclass, to which the
appropriate methods must be rewritten or added.

A simple unittest module can be composed as follows:

import unittest

class SimpleUnitTest(unittest.TestCase):

 def test(self):
 self.assertTrue(True)

if __name__ == '__main__':
 unittest.main()

To run the unittest module, you need to include unittest.main (), while we have a
single method, test(), which fails if True is ever False.

By executing the preceding example, you get the following result:

Ran 1 test in 0.005s

OK

The test was successful, thus giving the result, OK.

In the following section, we go into more detail about how the unittest module works. In
particular, we want to study what the possible outcomes of a unit test are.

Python Debugging and Testing Chapter 9

[327]

How to do it...
Let's see how we can characterize the results of a test with this example:

Import the relevant module:1.

import unittest

Define the outcomesTest class, which has the TestCase subclass as its2.
argument:

class OutcomesTest(unittest.TestCase):

The first method we define is testPass:3.

 def testPass(self):
 return

Here is the TestFail method:4.

 def testFail(self):
 self.failIf(True)

Next, we have the TestError method:5.

 def testError(self):
 raise RuntimeError('test error!')

Finally, we have the main function, with which we recall our procedure:6.

if __name__ == '__main__':
 unittest.main()

How it works...
In this example, the possible outcomes of a unit test by unittest are shown.

The possible outcomes are as follows:

ERROR: The test raises an exception other than AssertionError. There is no
explicit way to pass a test, so the test status depends on the presence (or absence)
of an exception.

Python Debugging and Testing Chapter 9

[328]

FAILED: The test is not passed and an AssertionError exception is raised.
OK: The test is passed.

The output is as follows:

===
ERROR: testError (__main__.OutcomesTest)

Traceback (most recent call last):
 File "unittest_outcomes.py", line 15, in testError
 raise RuntimeError('Errore nel test!')
RuntimeError: Errore nel test!

===
FAIL: testFail (__main__.OutcomesTest)

Traceback (most recent call last):
 File "unittest_outcomes.py", line 12, in testFail
 self.failIf(True)
AssertionError

Ran 3 tests in 0.000s

FAILED (failures=1, errors=1)

Most tests affirm the truth of a condition. There are different ways of writing tests that
verify a truth, depending on the perspective of the author of the test and whether the
desired result of the code is verified. If the code produces a value that can be evaluated as
true, then the failUnless () and assertTrue () methods should be used. If the code
produces a false value, then it makes more sense to use the failIf ()
and assertFalse () methods:

import unittest

class TruthTest(unittest.TestCase):

 def testFailUnless(self):
 self.failUnless(True)

 def testAssertTrue(self):
 self.assertTrue(True)

 def testFailIf(self):
 self.assertFalse(False)

 def testAssertFalse(self):

Python Debugging and Testing Chapter 9

[329]

 self.assertFalse(False)

if __name__ == '__main__':
 unittest.main()

The result is as follows:

> python unittest_failwithmessage.py -v
testFail (__main__.FailureMessageTest) ... FAIL

===
FAIL: testFail (__main__.FailureMessageTest)

Traceback (most recent call last):
 File "unittest_failwithmessage.py", line 9, in testFail
 self.failIf(True, 'Il messaggio di fallimento va qui')
AssertionError: Il messaggio di fallimento va qui

Ran 1 test in 0.000s

FAILED (failures=1)
robby@robby-desktop:~/pydev/pymotw-it/dumpscripts$ python unittest_truth.py
-v
testAssertFalse (__main__.TruthTest) ... ok
testAssertTrue (__main__.TruthTest) ... ok
testFailIf (__main__.TruthTest) ... ok
testFailUnless (__main__.TruthTest) ... ok

Ran 4 tests in 0.000s

OK

There's more...
As mentioned previously, if a test raises an exception other than AssertionError, then it
is treated as an error. This is very useful for discovering errors that occur while you are
editing code for which a matched test already exists.

Python Debugging and Testing Chapter 9

[330]

There are circumstances, however, in which you would want to run a test to verify that
certain code actually produces an exception. For example, in cases when an invalid value is
passed as an attribute of an object. In such cases, failUnlessRaises() makes the code
clearer than capturing the exception in your code:

import unittest

def raises_error(*args, **kwds):
 print (args, kwds)
 raise ValueError\
 ('Valore non valido:'+ str(args)+ str(kwds))

class ExceptionTest(unittest.TestCase):
 def testTrapLocally(self):
 try:
 raises_error('a', b='c')
 except ValueError:
 pass
 else:
 self.fail('Non si vede ValueError')

 def testFailUnlessRaises(self):
 self.assertRaises\
 (ValueError, raises_error, 'a', b='c')

if __name__ == '__main__':
 unittest.main()

The results for both are the same. However, the result for the second test, which uses
failUnlessRaises(), is shorter:

> python unittest_exception.py -v
testFailUnlessRaises (__main__.ExceptionTest) ... ('a',) {'b': 'c'}
ok
testTrapLocally (__main__.ExceptionTest) ...('a',) {'b': 'c'}
ok

Ran 2 tests in 0.000s

OK

Python Debugging and Testing Chapter 9

[331]

See also
More information on Python testing can be found at https:/ /realpython. com/python-
testing/.

Application testing using nose
nose is an important Python module for defining unit tests. It allows us to write simple test
functions using subclasses of unittest.TestCase but also, classes of tests that are not
subclasses of unittest.TestCase.

Getting ready
Install nose by using pip:

C:\>pip install nose

The source package can be downloaded and installed at https:/ / pypi. org/project/ nose/
by following these steps:

Unzip the source package.1.
cd to the new directory.2.

Then, enter the following command:

C:\>python setup.py install

One of the strengths of nose is automatically collecting tests from the following:

Python source files
Directories and packages found in the working directory

To specify which tests to run, pass the relevant test names on the command line:

C:\>nosetests only_test_this.py

The test names specified may be file or module names, and may optionally indicate the test
case to run by separating the module or filename from the test case name with a colon.
Filenames may be relative or absolute.

https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/
https://pypi.org/project/nose/

Python Debugging and Testing Chapter 9

[332]

Some examples are as follows:

C:\>nosetests test.module
C:\>nosetests another.test:TestCase.test_method
C:\>nosetests a.test:TestCase
C:\>nosetests /path/to/test/file.py:test_function

You may also change the working directory, where nose looks for tests, by using the -w
switch:

C:\>nosetests -w /path/to/tests

Note, however, that support for multiple -w arguments is now deprecated and will be
removed in a future release. However, it is possible to get the same behavior by specifying
the target directories without the -w switch:

C:\>nosetests /path/to/tests /another/path/to/tests

Further customization of test selection and loading is possible through the use of plugins.

The test result output is identical to that of unittest, except for the additional features,
such as error classes, and plugin-supplied features such as output capture and assert
introspection.

In the next section, we look at testing a class using nose.

How to do it...
Let's perform the steps that follow:

Import the relevant nose.tools:1.

from nose.tools import eq_

Then, set the TestSuite class. Here, the methods of the class are tested by2.
the eq_ function:

class TestSuite:
 def test_mult(self):
 eq_(2*2,4)
 def ignored(self):
 eq_(2*2,3)

Python Debugging and Testing Chapter 9

[333]

How it works...
A unit test can be developed independently by the developer, but it is good practice to have
a standard product such as unittest and adhere to a common test practice.

As you can see from the following example, the test method was set by using the eq_
function. This is similar to assertEquals by unittest, which verifies that the two
parameters are equal:

 def test_mult(self):
 eq_(2*2,4)
 def ignored(self):
 eq_(2*2,3)

This testing practice, despite good in intentions, has obvious limitations, such as not being
able to be repeated over time (for example, when a software module changes) for so-called
regression tests.

Here is the output:

C:\>nosetests -v testset.py
testset.TestSuite.test_mult ... ok

Ran 1 tests in 0.001s

OK

In general, testing is not able to identify all the errors in a program and the same is true for
unit testing, which, by analyzing individual units by definition, cannot identify integration
errors, performance problems, and other system-related problems. In general, unit testing is
more effective when used in conjunction with other software testing techniques.

Like any form of testing, even unit testing cannot certify the absence of errors, but can only
highlight their presence.

There's more...
Software testing is a combinatorial mathematics problem. For example, each Boolean test
requires at least two tests, one for the true condition and one for the false condition. It can
be shown that, for each functional code line, three to five lines of code are required for a
test. It is therefore unrealistic to test all possible input combinations of any non-trivial code
without a dedicated test case generation tool.

Python Debugging and Testing Chapter 9

[334]

To achieve the desired benefits from a unit test, a strict sense of discipline is required
throughout the development process. It is essential to keep track not only of the tests that
have been developed and performed but also of all the changes made to the functional code
of the unit in question and all the other units. The use of a version control system is
essential. If a later version of a unit fails a test that it previously passed, then a version
control system allow you to highlight the code changes that have occurred in the meantime.

See also
A valid tutorial on nose is available at https:/ /nose. readthedocs. io/en/ latest/ index.
html.

https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html
https://nose.readthedocs.io/en/latest/index.html

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering GUI Programming with Python
Alan D. Moore

ISBN: 9781789612905

Get to grips with the inner workings of PyQt5
Learn how elements in a GUI application communicate with signals and slots
Learn techniques for styling an application
Explore database-driven applications with the QtSQL module
Create 2D graphics with QPainter
Delve into 3D graphics with QOpenGLWidget
Build network and web-aware applications with QtNetwork and QtWebEngine

https://www.packtpub.com/in/application-development/mastering-gui-programming-python

Other Books You May Enjoy

[336]

Expert Python Programming - Third Edition
Tarek Ziadé, Michał Jaworski

ISBN: 9781789808896

Explore modern ways of setting up repeatable and consistent development
environments
Package Python code effectively for community and production use
Learn modern syntax elements of Python programming such as f-strings, enums,
and lambda functions
Demystify metaprogramming in Python with metaclasses
Write concurrent code in Python
Extend Python with code written in different languages
Integrate Python with code written in different languages

https://www.packtpub.com/in/application-development/expert-python-programming-third-edition

Other Books You May Enjoy

[337]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Advanced Message Queuing Protocol (AMQP)

196

agglomeration 26
Alltoall
 used, for collective communication 140, 141,

142

Amazon Web Services (AWS) 218
Amdahl's law 30
application testing
 nose, using 331, 332, 333
applications
 building, with PyOpenCL 276, 277, 278, 279,

280, 281
assignments 35
asyncio
 dealing with 177, 179, 180
 reference link 166
 tasks, reference link 177
 used, for handling coroutines 166, 167, 168,

170, 171
 used, for managing event loop 160, 162, 163,

164, 165
 used, for manipulating tasks 173, 174, 175, 176
AWS Lambda 246
AWS Step Functions 248

B
barrier
 using, for thread synchronization 81, 82
billiard package
 reference link 197
broadcast
 used, for collective communication 131, 132,

133, 134
buffered mode 126

C
cache coherency 17
Cache-Only Memory Architecture (COMA) 18
Celery
 reference link 202
 used, for distributed task management 194, 196,

197, 199
 using 200, 202
 Windows setup 197
chain topology
 about 207
 implementing 208, 209, 210
class definition techniques
 reference link 101
classes 40
client-server applications
 about 183
 client-server architecture 184
 client-server communications 185
 TCP/IP connection 185, 186
cloud community 217
cloud computing architecture 214
cloud computing platforms 218
cloud computing services
 about 215
 Infrastructure as a Service (IaaS) 216
 Platform as a Service (PaaS) 216
 Software as a Service (SaaS) 215
cloud computing
 about 212, 213
 characteristics 212
cluster of workstations 20
clusters
 fail-over cluster 20
 high-performance computing cluster 20
 load balancing cluster 20

[339]

collective communication
 Alltoall, using 140, 141, 142
 broadcast, using 131, 132, 133
 gather function, using 137, 138, 139, 140
 scatter function, using 134, 135, 137
comments 35
communication
 optimizing 146, 147, 148, 150, 152
communicator function 120
Compute Unified Device Architecture (CUDA)
 about 253
 advantages 293
 disadvantages 293
 programming, reference link 257
concurrent.futures module
 using 154, 155, 157
 working 157, 159
condition
 using, for thread synchronization 73, 74, 75, 77
container 236
coroutines in Python
 reference link 173
coroutines
 handling, with asyncio 166, 167, 168, 170, 171
CUDA model and interface, programming guide
 reference link 257
current thread
 determining 55, 56, 57

D
daemons 94
data types
 about 35, 37
 dictionaries 35
 lists 35
 tuples 35
data-parallel model
 parallel program, designing 25
data
 exchanging, queue used 101, 102, 103, 104
deadlock problems
 avoiding 126, 128, 129, 130
debuggers 302
debugging
 about 303

 strategies 314
 Winpdb Reborn, using 305, 306, 307, 309, 311,

312, 313, 314
devices 251
distributed applications, types
 about 183
 client-server applications 183
 multi-level applications 186
distributed computing 182, 183
distributed memory system
 about 15, 18, 19
 advantages 18
 features 19
Distributed Shared Memory (DSM) 17
distributed task management
 with Celery 194, 196, 197, 198, 199
distribution models, cloud computing architectures
 about 216
 cloud community 217
 hybrid cloud 217
 private cloud 217
 public cloud 217
Django
 reference link 229
Docker
 installing, for Windows 231
dynamic mapping
 about 27, 28
 decentralize 28
 global algorithms 27
 hierarchical manager/worker 28
 local algorithms 27
 manager/worker 28

E
efficiency 29, 30
element-wise expressions
 with PyOpenCL 283, 284, 285
event loop
 about 160, 161
 managing, with asyncio 160, 162, 163, 164,

165

 reference link 161
event source 161
event

[340]

 using, for thread synchronization 77, 79, 80
exceptions 41

F
Field-Programmable Gate Arrays (FPGAs) 276
files
 managing 42
finite state automaton 167
finite state machine 167
First-In, First-Out (FIFO) 101
flow control 38
Flynn's taxonomy
 about 10
 data flow 10
 instruction flow 10
 Multiple Instruction Multiple Data (MIMD) 14, 15
 Multiple Instruction Single Data (MISD) 13
 Single Instruction Multiple Data (SIMD) 13
 Single Instruction Single Data (SISD) 10
function 39
Function as a Service (FaaS) 236
futures
 dealing with 177, 179, 180

G
gather function
 used, for collective communication 137, 138,

140

Global Interpreter Lock (GIL) 45
glue language, Python
 reference link 32
Google App Engine
 reference link 229
GPU programming
 about 252, 253
 CUDA 253
 OpenCL 253
 with Numba 293, 294, 295, 296, 297, 298
Graphics Processing Unit (GPU)
 about 250
 architecture 252
Gustafson's law 31

H
help function 32, 33
Heroku
 reference link 229
heterogeneous architecture 20, 21
heterogeneous computing 251
heterogeneous programming
 with PyCUDA 257, 258, 259, 260, 261, 262
High-Performance Computing (HPC) 119
host 251
hybrid cloud 217
Hypervisor 235

I
Infrastructure as a Service (IaaS) 216
Inter-Process Communication (IPC) 187

L
Lambda function 247
Last In, First Out (LIFO) 313
layers, multi-level applications
 Business Logic Layer (BLL) 186
 Data Access Layer (DAL) 186
 Presentation Layer (PL) 186
libraries
 importing 42
Linux Containers (LXC) 230
list comprehensions 43
lock-acquire execution 64
lock-release execution 64
lock
 used, for thread synchronization 61, 62, 63, 64
 versus RLock 69
locked state 66

M
mapping 27
mapping problem 27
massively parallel processing (MPP) 20
memory access, shared memory system
 Cache-Only Memory Architecture (COMA) 18
 No Remote Memory Access (NoRMA) 17
 Non-Uniform Memory Access (NUMA) 17
 Uniform Memory Access (UMA) 17

[341]

memory management
 implementing, with PyCUDA 263, 264, 265,

266, 267, 268, 269, 271
memory organization
 about 15
 cluster of workstations 20
 distributed memory system 18, 19
 heterogeneous architecture 20, 21
 in MIMD architecture 15
 massively parallel processing (MPP) 20
 shared memory system 16, 17
message brokers
 reference links 202
Message Passing Interface (MPI)
 about 23, 116
 advantages 119
 reference link 117
 structure 117, 118
message passing model 23
Microservice architecture
 in Docker 234, 236
 in virtual machine 234, 236
mpi4py Python module
 using 119, 120, 121, 122
mpich
 installation link 117
multi-level applications 186
Multiple Instruction Multiple Data (MIMD) 14, 15
Multiple Instruction Single Data (MISD) 13
multiprocessing documentation
 reference link 88
multiprocessing
 implementation 49
multithread model 23
multithreaded programming 50
mutex 72

N
National Institute of Standards and Technology

(NIST) 213
No Remote Memory Access (NoRMA) 17
Non-Uniform Memory Access (NUMA) 17
nose
 reference link 334
 used, for testing application 331, 332, 333

NP-complete 27
Numba
 reference link 253, 301
 using, for GPU programming 293, 294, 295,

296, 297, 298
NumPy Generalized Universal Function (gufunc)

294

NumPy Universal Function (ufunc) 294

O
objects
 exchanging, pipes used 105, 106, 107, 108
Open Computing Language (OpenCL)
 about 253, 292
 cons 292
 pros 293
 reference link 276
OpenShift
 reference link 229
original class 61

P
parallel computing
 need for 9
parallel processing
 versus distributed processing 183
parallel program
 agglomeration 26
 Amdahl's law 30
 designing 25
 dynamic mapping 27
 efficiency 29
 Gustafson's law 31
 mapping 27
 performance, evaluating 28, 29
 scaling 30
 speedup 29
 task assignment 26
 task decomposition 26
parallel programming models
 about 22
 data-parallel model 24, 25
 message passing model 23
 multithread model 23
 shared memory model 22

[342]

pdb
 command line, interacting with 315
 directive, inserting in code to debug 316
 features 314
 interacting with 314, 317, 318, 319
 Python interpreter, using 316
 reference link 319
PEP380
 reference link 167
pip
 installing 44
 updating 44
 used, for installing Python packages 44
 using 44
pipes
 reference link 108
 used, for exchanging objects 105, 106, 108
Platform as a Service (PaaS) 216
point-to-point communication
 implementing 122, 123, 124, 125, 126
Pool class
 apply() method, reference link 112
 apply_async() method 112
 map() method, reference link 112
 map_async() method 112
pooling technique 155, 159
Portable Operating System Interface (POSIX) 23
private cloud 217
process pool
 reference link 115
 using 112, 113, 115
process
 about 45, 46, 47
 defining, in subclass 99, 100, 101
 executing, in background 93, 94, 95
 killing 96, 98
 naming 91, 92, 93
 spawning 88, 89, 90, 91
 synchronization examples, reference link 112
 synchronizing 108, 109, 111
 threads 48
 versus threads 46
producer-consumer problem 101
public cloud 217
PyCUDA

 dealing with 254, 255
 element-wise functionality 286
 execution model 256
 reference link 253, 257
 used, for implementing memory management

263, 264, 265, 266, 267, 268, 269, 271
 using, for heterogeneous programming 257,

258, 259, 260, 261, 262
 working 255
PyOpenCL applications
 evaluating 287, 288, 289, 290, 291
PyOpenCL
 about 272, 273, 282
 advantages 292
 disadvantages 292
 programming, reference link 282
 reference link 254, 276
 used, for building applications 276, 277, 278,

279, 280, 281
 using, for element-wise expressions 283, 284,

285

 working 274
Pyro4
 with RMI 202, 203, 205, 206, 207
Python 3.5.0
 reference link 53
Python 3.7.4 documentation
 reference link 91
Python application
 dockerizing 230, 232, 233, 234
Python debuggers
 reference link 304, 305
Python parallel programming
 about 45
 processes 45, 47, 48, 49
 threads 45, 46
Python socket module
 using 187, 189, 190, 191
Python sockets
 reference link 194
Python testing
 reference link 331
Python version 2.x
 reference link 306
Python

[343]

 about 31, 32
 assignments 35
 classes 40
 comments 35
 data types 35, 37
 exceptions 41
 features 31, 32
 files, managing 42
 flow control 38
 function 39
 help function 32, 33
 libraries, importing 42
 list comprehensions 43
 multiprocessing module 88
 package installation, pip used 44
 scripts, executing 43
 strings 37
 syntax 34
PythonAnywhere
 reference link 229
 web applications, developing with 218, 219,

221, 222, 223, 226, 228

Q
queue module
 using, for thread communication 83, 84, 85
queue
 about 101
 used, for exchanging data 101, 102, 104
 using, reference link 105

R
RabbitMQ
 installation link 196
ranks 120
reduction kernels 299
reduction operation
 about 299, 300
 using 143, 144, 145
register 11
Remote Method Invocation (RMI)
 with Pyro4 202, 203, 205, 206, 207
RLock
 used, for thread synchronization 66, 68
rpdb

 implementation, for debugging 319, 320, 321,
322, 323, 325

 reference link 325

S
scaling 30
scatter function
 used, for collective communication 134, 136,

137

semaphores
 used, for thread synchronization 69, 70, 71
serverless computing
 about 236, 237, 238, 240, 242, 245, 247
 issues 248
 limitations 248
 working 246
shared memory model 22
shared memory system
 about 15, 16, 17
 features 17
Single Instruction Multiple Data (SIMD)
 about 13
 numerical supercomputers 14
 vectorial machines 14
Single Instruction Single Data (SISD)
 about 10, 11, 12
 central memory unit 11
 CPU 11
 I/O system 11
Single Program Multiple Data (SPMD) 121
SISD, CPU operations
 decode 11
 execute 11
 fetch 11
socket
 communicating, through phases 193
sockets, types
 about 193
 datagram sockets 193
 raw socket 193
 stream sockets 193
Software as a Service (SaaS) 215
software testing 305
speedup 29
stream sockets 193, 194

Streaming Multiprocessors (SMs) 251
Streaming Processors (SPs) 252
strings 37
Symmetric Multiprocessors (SMPs) 17
synchronization primitive
 barrier 109
 condition 108
 event 108
 lock 108
 RLock 109
 semaphore 109
synchronous mode 126
syntax 34

T
task assignment 26
task decomposition
 about 26
 domain decomposition 26
 functional decomposition 26
tasks
 manipulating, with asyncio 173, 174, 175, 176
TCP/IP client-server architecture 186
telnet client 319
thread communication
 with queue module 83, 84, 85
Thread IDentification (TID) 313
thread subclass
 defining 57, 58, 59, 60
thread synchronization
 with barrier 81, 82
 with condition 73, 74, 75, 77
 with event 77, 79, 80
 with lock 61, 62, 63, 64
 with RLock 66, 68

 with semaphores 69, 70, 71
thread
 about 45, 46, 47, 48, 49, 51, 52
 defining 53, 54, 55
 versus processes 46
threading module 52, 53

U
Uniform Memory Access (UMA) 17
unittest module
 dealing with 326, 327, 329, 330
unlocked state 66

V
Virtual Machine Manager 215

W
warp scheduler 263
warps 263
web applications
 developing, with PythonAnywhere 218, 219,

221, 222, 223, 226, 228
web2py
 reference link 229
webhooks
 reference link 202
Windows
 Docker, installing for 231
Winpdb Reborn
 about 305
 references 305
 used, for debugging 305, 306, 307, 309, 311,

312, 313, 314
WS web console
 reference link 237

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Parallel Computing and Python
	Why do we need parallel computing?
	Flynn's taxonomy
	Single Instruction Single Data (SISD)
	Multiple Instruction Single Data (MISD)
	Single Instruction Multiple Data (SIMD)
	Multiple Instruction Multiple Data (MIMD)

	Memory organization
	Shared memory
	Distributed memory
	Massively Parallel Processing (MPP)
	Clusters of workstations
	Heterogeneous architectures

	Parallel programming models
	Shared memory model
	Multithread model
	Message passing model
	Data-parallel model
	Designing a parallel program
	Task decomposition
	Task assignment
	Agglomeration
	Mapping
	Dynamic mapping

	Evaluating the performance of a parallel program
	Speedup
	Efficiency
	Scaling
	Amdahl's law
	Gustafson's law

	Introducing Python
	Help functions
	Syntax
	Comments
	Assignments
	Data types
	Strings
	Flow control
	Functions
	Classes
	Exceptions
	Importing libraries
	Managing files
	List comprehensions
	Running Python scripts
	Installing Python packages using pip
	Installing pip
	Updating pip
	Using pip

	Introducing Python parallel programming
	Processes and threads

	Chapter 2: Thread-Based Parallelism
	What is a thread?
	Python threading module
	Defining a thread
	Getting ready
	How to do it...
	How it works...
	There's more...

	Determining the current thread
	Getting ready
	How to do it...
	How it works...

	Defining a thread subclass
	Getting ready
	How to do it...
	How it works...
	There's more...

	Thread synchronization with a lock
	Getting ready
	How to do it...
	How it works...
	There's more...

	Thread synchronization with RLock
	Getting ready
	How to do it...
	How it works...
	There's more...

	Thread synchronization with semaphores
	Getting ready
	How to do it...
	How it works...
	There's more...

	Thread synchronization with a condition
	Getting ready
	How to do it...
	How it works...
	There's more...

	Thread synchronization with an event
	Getting ready
	How to do it...
	How it works...

	Thread synchronization with a barrier
	Getting ready
	How to do it...
	How it works...

	Thread communication using a queue
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 3: Process-Based Parallelism
	Understanding Python's multiprocessing module
	Spawning a process
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Naming a process
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running processes in the background
	Getting ready
	How to do it...
	How it works...
	See also

	Killing a process
	Getting ready
	How to do it...
	How it works...
	See also

	Defining processes in a subclass
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using a queue to exchange data
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using pipes to exchange objects
	Getting ready
	How to do it...
	How it works...
	There's more...
	 See also

	Synchronizing processes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using a process pool
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also

	Chapter 4: Message Passing
	Technical requirements
	Understanding the MPI structure
	Using the mpi4py Python module
	How to do it...
	How it works...
	There's more...
	See also

	Implementing point-to-point communication
	How to do it...
	How it works...
	There's more...
	See also

	Avoiding deadlock problems
	How to do it...
	How it works...
	There's more...
	See also

	Collective communication using a broadcast
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Collective communication using the scatter function
	How to do it...
	How it works...
	There's more...
	See also

	Collective communication using the gather function
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Collective communication using Alltoall
	How to do it...
	How it works...
	There's more...
	See also

	The reduction operation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Optimizing communication
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Asynchronous Programming
	Using the concurrent.futures Python module
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Managing the event loop with asyncio
	Understanding event loops
	How to do it...
	How it works...
	There's more...
	See also

	Handling coroutines with asyncio
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Manipulating tasks with asyncio
	How to do it...
	How it works...
	There's more...
	See also

	Dealing with asyncio and futures
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 6: Distributed Python
	Introducing distributed computing
	Types of distributed applications
	Client-server applications
	Client-server architecture
	Client-server communications
	TCP/IP client-server architecture

	Multi-level applications

	Using the Python socket module
	Getting ready
	How to do it...
	How it works...
	There's more...
	Types of sockets
	Stream sockets

	See also

	Distributed task management with Celery
	Getting ready
	Windows setup

	How to do it...
	How it works...
	There's more...
	See also

	RMI with Pyro4
	Getting ready
	How to do it...
	How it works...
	There's more...
	Implementing chain topology

	See also

	Chapter 7: Cloud Computing
	What is cloud computing?
	Understanding the cloud computing architecture
	Service models
	SaaS
	PaaS
	IaaS

	Distribution models
	Public cloud
	Private cloud
	Cloud community
	Hybrid cloud

	Cloud computing platforms

	Developing web applications with PythonAnywhere
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Dockerizing a Python application
	Getting ready
	Installing Docker for Windows

	How to do it...
	How it works...
	There's more...
	See also

	Introducing serverless computing
	Getting ready
	How to do it...
	How it works...
	There's more...
	What is a Lambda function?
	Why serverless?
	Possible problems and limitations

	See also

	Chapter 8: Heterogeneous Computing
	Understanding heterogeneous computing
	Understanding the GPU architecture
	Understanding GPU programming
	CUDA
	OpenCL

	Dealing with PyCUDA
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Heterogeneous programming with PyCUDA
	How to do it...
	How it works...
	There's more...
	See also

	Implementing memory management with PyCUDA
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Introducing PyOpenCL
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building applications with PyOpenCL
	How to do it...
	How it works...
	There's more...
	See also

	Element-wise expressions with PyOpenCL
	Getting started
	How to do it...
	How it works...
	There's more...
	See also

	Evaluating PyOpenCL applications
	Getting started
	How to do it...
	How it works...
	There's more...
	Pros of OpenCL and PyOpenCL
	Cons of OpenCL and PyOpenCL
	Pros of CUDA and PyCUDA
	Cons of CUDA and PyCUDA

	See also

	GPU programming with Numba
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 9: Python Debugging and Testing
	What is debugging?
	What is software testing?
	Debugging using Winpdb Reborn
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Interacting with pdb
	Getting ready
	Interacting with the command line
	Using the Python interpreter
	Inserting a directive in the code to debug

	How to do it...
	How it works...
	There's more...
	See also

	Implementing rpdb for debugging
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Dealing with unittest
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Application testing using nose
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Other Books You May Enjoy
	Index

